
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1999

The theory and practice of green insurance:
insurance to encourage the adoption of corn
rootworm IPM
Paul David Mitchell
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Agricultural and Resource Economics Commons, and the Agricultural Economics
Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Mitchell, Paul David, "The theory and practice of green insurance: insurance to encourage the adoption of corn rootworm IPM "
(1999). Retrospective Theses and Dissertations. 12155.
https://lib.dr.iastate.edu/rtd/12155

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F12155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F12155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F12155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F12155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F12155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F12155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/317?utm_source=lib.dr.iastate.edu%2Frtd%2F12155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1225?utm_source=lib.dr.iastate.edu%2Frtd%2F12155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1225?utm_source=lib.dr.iastate.edu%2Frtd%2F12155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/12155?utm_source=lib.dr.iastate.edu%2Frtd%2F12155&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


www.manaraa.com

INFORMATION TO USERS 

This manuscript has been reprcxjuced from the microfilm master. UMI films the 

text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 

computer printer. 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleedthrough, substandard margins, and improper alignment 

can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete manuscript and 

there are missing pages, these will be noted. Also, if unauthorized copyright 

material had to be removed, a note will indicate the deletion. 

Oversize materials (e.g., maps, drav/ings, charts) are reproduced by sectioning 

the original, beginning at the upper left-hand comer and continuing from left to 

right in equal sections with small overiaps. Each original is also photographed in 

one exposure and is included in reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. IHigher quality 6" x 9" black and white photographic 

prints are available for any photographs or illustrations appearing in this copy for 

an additional charge. Contact UMI directly to order. 

Bell & Howell lnfonnatk)n and teaming 
300 North Zeeb Road, Ann Arfoor, Ml 48106-1346 USA 

800-521-0600 



www.manaraa.com



www.manaraa.com

The theory and practice of green insurance: 

Insurance to encourage the adoption of com rootworm IPM 

by 

Paul David Mitchell 

A dissertation submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Major; Agricultural Economics 

Major Professor: Bruce A. Babcock 

Iowa State University 

Ames, Iowa 

1999 

Copyright © Paul David Mitchell, 1999. All rights reserved. 



www.manaraa.com

UMI Nxjmber: 9940227 

UMI Microform 9940227 
Copyright 1999, by UMI Company. All rights reserved. 

This microform edition is protected against unauthorized 
copying under Title 17, United States Code. 

UMI 
300 North Zeeb Road 
Ann Arbor, MI 48103 



www.manaraa.com

ii 

Graduate College 

Iowa State University 

This is to certify that the Doctoral dissertation of 

Paul David Mitchell 

has met the dissertation requirements of Iowa State University 

Major Professor 

if the Major rfogram 

or the Gramme College 

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.



www.manaraa.com

iii 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ix 

ABSTRACT x 

1. LITERATURE SYNTHESIS AND DISSERTATION OVERVIEW 1 

1. L Introduction I 

1.2. Problem Motivation and Literature Synthesis 2 

1.2.1. Input Demand under Production Uncertainty 2 

1.2.2. Effect of Crop and Revenue Insurance on Input Demand 5 

1.2.3. Effect of Commodity Programs on Input Demand 6 

1.2.4. Non-Point Source Pollution 8 

1.2.5. Best Management Practices and Input Use 11 

1.2.6. Green Insurance 13 

1.3. Overview of Green Insurance for Com Rootworm IPM 16 

2. THEORETICAL ANALYSIS OF GREEN INSURANCE 21 

2.1. Introduction 21 

2.2. General Model of Stochastic Production with a BMP and Green Insurance 21 

2.2.1. Model Description and Sequence of Events 21 

2.2.2. Derivation of Optimal Input Level for Each Production Technology 28 

2.2.2.1. Introduction 28 

2.2.2.2. Status Quo Production Technology 28 

2.2.2.3. BMP Production Technology 29 

2.2.2.4. BMP Production Technology with Green Insurance 29 



www.manaraa.com

iv 

2.3. Theoretical Analysis of Adoption Incentives 30 

2.3.1. Introduction 30 

2.3.2. BMP Adoption Incentives 31 

2.3.3. Effect of Green Insurance on BMP Adoption Incentives 35 

2.3.4. Green Payments versus Green Insurance for Incentive Provision 42 

2.3.5. Conclusion 46 

2.4. Theoretical Analysis of Policy Instrument Impacts on Optimal Input Use 47 

2.4.1. Introduction 47 

2.4.2. Impact of BMP Adoption on Optimal Input Use 48 

2.4.3. Impact of Green Payments on Optimal Input Use 50 

2.4.4. Impact of Green Insurance on Optimal Input Use 52 

2.4.5. Green Insurance to Reduce Optimal Input Use 57 

2.4.6. Conclusion 63 

3. STOCHASTIC DYNAMIC CORN ROOTWORM POPULATION MODEL 64 

3.1. Introduction 64 

3 .2. Stochastic Weather Generation 64 

3.2.1. Introduction 64 

3.2.2. Data Sources for Estimating Precipitation and Temperature Models 65 

3.2.3. Precipitation Model and Parameter Estimates 66 

3.2.3.1. Markov Chain Model of Daily Precipitation Status 66 

3.2.3.2. Exponential Model of Daily Precipitation 67 

3.2.3.3. Summary of Precipitation Model 70 

3.2.4. Air Temperature Model and Parameters Estimates 70 



www.manaraa.com

V 

3.2.4.1. Introduction 70 

3.2.4.2. Fourier Series for Daily Mean and Standard Deviation 
of Maximum and Minimum Air Temperatures 72 

3.2.4.3. Correlation of Maximum and Minimum Air Temperatxires 81 

3.2.4.4. Summary of Air Temperature Model 83 

3.2.5. Soil Temperature Model 84 

3.2.5.1. Introduction 84 

3.2.5.2. Daily Average Soil Temperature Model 84 

3.2.5.3. Daily Maximum and Minimum Soil Temperature Model 88 

3.2.5.4. Summary of Soil Temperature Model 90 

3.2.6. Algorithm for Calculating Degree Days 90 

3.3. Com Rootworm Population Model 92 

3.3.1. Introduction 92 

3.3.2. Model of Adult Population Dynamics and Oviposition 93 

3.3.2.1. Introduction 93 

3.3.2.2. Equations for Adult Population Dynamics 94 

3.3.2.3. Adult Emergence 96 

3.3.2.4. Mortality 97 

3.3.2.5. Age-Dependent Probability of Advancement 98 

3.3.2.6. Oviposition 100 

3.3.2.7. Conclusion 102 

3.3.3. Model of Egg Hatch and Larval Survival 102 

3.3.3.1. Introduction 102 



www.manaraa.com

vi 

3.3.3.2. Model of Egg Hatch 103 

3.3.3.3. Model of Larval Survival to Emergence 107 

3.3.3.4. Summary of Egg Hatch and Larval Survival Model 110 

3.4. Conclusion 110 

4. SIMPLIFIED POPULATION MODEL AND STOCHASTIC MODEL OF 
ROOT RATING, LODGING, AND YIELD LOSS 112 

4.1. Introduction 112 

4.2. Simplified Stochastic Dynamic Com Rootworm Population Model 112 

4.2.1. Introduction 112 

4.2.2. Com Rootworm Population Model Simulations 113 

4.2.3. Estimation of Com Rootworm Population Density Functions 116 

4.2.3.1. Percent Egg Hatch Density Function 116 

4.2.3.2. Maximum Adult Population Conditional Density Function 118 

4.2.3.3. Oviposition Conditional Density Function 121 

4.3. Root Rating, Lodging, and Yield Loss Density Functions 124 

4.3.1. Introduction 124 

4.3.2. Root Rating Conditional Density Function 124 

4.3.2.1. Conditional MOM Parameter Estimates 124 

4.3.2.2. Derivation of Insecticide Efficacy 127 

4.3.3. Lodging Conditional Density Function 129 

4.3.4. Yield Loss Conditional Density Function 131 

4.4. Summary 134 



www.manaraa.com

vii 

5. EMPIRICAL ANALYSIS OF CORN ROOTWORM IPM INSURANCE 136 

5.1. Introduction 136 

5.2. Model Specification 137 

5.2.1. General Model Overview 137 

5.2.2. Profit Specifications and Producer Optimization Programs 139 

5.2.2.1. Status Quo Case 139 

5.2.2.2. Integrated Pest Management Case 143 

5.2.2.3. Integrated Pest Management with Insiurance Case 144 

5.2.2.4. Similarity of the Com Rootworm Model and the 
General Theoretical Model 146 

5.3. Overview of the Monte Carlo Technique 148 

5.3.1. Monte Carlo Analysis 148 

5.3.2. Random Number Generation in C++ 149 

5.4. Analysis of IPM 151 

5.4.1. Willingness to Pay for IPM 151 

5.4.1.1. Introduction 151 

5.4.1.2. Risk Neutral Producer's Willingness to Pay for IPM 152 

5.4.1.3. Risk Averse Producer's Willingness to Pay for IPM 156 

5.4.1.4. Cost of Implementing IPM 160 

5.4.2. Impact of IPM on Optimal Insecticide Use 161 

5.4.2.1. Introduction 161 

5.4.2.2. The Adoption Effect for Risk Neutral Producers 162 

5.4.2.3. The Adoption Effect for Risk Averse Producers 166 



www.manaraa.com

viii 

5.4.3. Optimal versus Uniform EIL 167 

5.5. Analysis of IPM Insurance 173 

5.5.1. Willingness to Pay for IPM Insurance 173 

5.5.1.1. Choice of Insurance Signal 173 

5.5.1.2. Willingness to Pay for Optimal versus Uniform Insurance 177 

5.5.1.3. Evaluation of Com Rootworm IPM Insurance 178 

5.5.2. Impact of IPM Insurance on Optimal Insecticide Use 188 

5.6. Summary of Empirical Findings 190 

REFERENCES 192 



www.manaraa.com

ix 

ACKNOWLEDGEMENTS 

A few words of gratitude in a dissertation that few, if anyone, will ever read hardly 

does justice to the most important people in my life—my wife Jennifer and my children 

Abigail and Isaiah. Their love and support made this dissertation and Ph.D. possible and far 

more sane. When the academic world became too esoteric, they kept me in touch with the 

most important things in life. 

I also want to acknowledge and thank some (not all) of the other people that made 

this dissertation possible. Bruce Babcock patiently provided his time—he was available to 

meet with me and offer insightful comments on short notice. As head of REP and then 

director of CARD he also made the financial resources available to make this dissertation 

happen. Todd Campbell and Mark Siemers provided invaluable C++ programming expertise 

as I learned how to program. David Heruiessy kindly jump-started my theoretical analysis 

when Bruce was out of town and time was short. Larry Chandler was a generous host and 

made the expertise of the staff at the USDA-ARS Northern Grains Insect Research 

Laboratory (NGIRL) available. Walt Riedell at the NGIRL kindly provided essential data 

that made the empirical analysis possible. Rick Hellmich graciously invited me into the 

academic world of entomology and Terry Hurley showed me the service that agricultural 

economists can provide to help solve real problems. 

Lastly, I want to thank the Risk gang. Our nights of fun playing Risk greatly reduced 

the stress of graduate school and made for some fond memories. Membership has changed 

through the years and is too long to list, but I want to specifically thank Rick Winholtz for 

starting it ail, (John) Ray Bratsch-Prince for so often being a generous host, Mike Schweyen 

for being such a good loser, and Dan Topf for keeping it fun. 



www.manaraa.com

X 

ABSTRACT 

Best management practices exist that increase profit and improve the environmental 

performance of agricuhure by increasing input use efficiency. Nevertheless, few producers 

adopt these best management practices. The risks involved with the adoption and use of 

these new best management practices are often thought to contribute to this low adoption 

rate. This dissertation theoretically and empirically analyzes the potential for best 

management practice insurance—green insurance—to provide insurance coverage against the 

failure of the practice, thus substantially reducing the risks involved with its adoption and 

use. Best management practice insurance removes, or at least reduces, a potentially 

significant factor hindering the adoption of the practice. 

A general model of stochastic production focused on optimal input use is developed 

to theoretically analyze the impact of best management practice insurance on producer 

incentives to adopt the practice and on optimal input use. Theoretical results are summarized 

in a series of propositions, but often the sign and magnitude of important effects are 

theoretically ambiguous, and empirical analysis is required. 

A stochastic dynamic com rootworm population model is developed to empirically 

analyze com rootworm integrated pest management (IPM). Monte Carlo simulations are 

used to evaluate the potential for 1PM insurance to encourage producers to adopt com 

rootworm 1PM and reduce insecticide use. Depending on the plant day and location, for 

producers annually applying soil insecticides, com rootworm 1PM is worth on average $10 to 

$7.50 per acre, not including the cost of IPM scouting, and reduces insecticide application 

75% to 95%. Depending on the plant day and location, actuarially fair IPM insurance 

requires a premium of $2.15 to $4.50 per acre and is worth S0.30 to $0.60 per acre to 
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producers. Unfortunately, once the actuarially fair premium is increased to make the 

insurance feasible for private insurance companies to provide, producers are no longer 

willing to purchase the IPM insurance. This occurs because profit losses occurring when 

IPM fails are generally small, and thus the value to producers of the risk sharing benefits of 

IPM insurance is small. 
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CHAPTER 1: LITERATURE SYNTHESIS AND DISSERTATION OVERVIEW 

1.1 Introduction 

Because agricultural production is partially stochastic, inputs are often not completely 

consumed by the production processes and as a result generate pollution. In addition, 

production uncertainty affects input demands, so that producers may over-utilize inputs to 

manage risk, further contributing to pollution. Obvious examples include traditional non-

point source pollution problems such as nutrient and chemical losses from fertilizer and 

pesticide use, as well as soil erosion occurring as a result of tillage. In the development and 

implementation of current and past programs to reduce non-point source pollution, policy 

makers in general have not fully taken the risk management use of inputs into account. As a 

result, the potential exists to develop more efficient incentive-based methods for non-point 

source pollution reduction. 

This dissertation presents a theoretical and empirical analysis of a "green insurance" 

program that takes advantage of these potential efficiency gains. This green insurance 

provides coverage for producers who adopt production practices that use inputs more 

efficiently and thus generate less pollution. In addition, since production uncertainty is 

reduced, producers may use green insurance as a substitute for the use of inputs to manage 

risk, further reducing input use and pollution. As a market-based method, green insurance 

may provide incentives for the reduction of non-point source pollution more efficiently than 

subsidies. Green insurance is also more practical than current permit trading schemes 

developed for non-point source pollution problems. 

The remainder of the dissertation is organized as follows. To motivate the work and 

place it in context, chapter I provides a synthesis of the literature on input use under 
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production uncertainty and agricultural non-point source pollution. In addition, chapter 1 

includes a motivation and overview of Integrated Pest Management (IPM) insurance for com 

rootworm, the green insurance program analyzed in the empirical portion of this dissertation. 

Chapter 2 presents a general theoretical model of input demand under production uncertainty 

when an alternative production practice and green insurance is available. This model is used 

to analyze producer incentives to adopt the new practice and purchase green insurance, as 

well as the impacts on optimal input use. Chapters 3 and 4 describe the stochastic model of 

com rootworm population dynamics. Chapter 5 discusses the results of the empirical 

analysis of the IPM insurance for com rootworm based on this population model. 

1.2 Problem Motivation and Literature Synthesis 

1.2.1 Input Demand under Production Uncertainty 

Traditionally agricultural economists have analyzed the impacts of production 

uncertainty on input demands by focusing on income (or yield) variability and used the 

Arrow-Pratt concept of risk aversion. With this approach, risk preferences matter and the 

standard neoclassical decision mle is modified so that the value of an input's marginal 

product is equated to the sum of its price and the marginal risk premium. The conditions 

necessary to determine the sign of the marginal risk premium and its comparative static 

responses to various factors became an important area of theoretical research. Pope and 

Kramer (1979) categorized inputs as either risk increasing and risk reducing according to 

how they affected the marginal risk premium, but only in the context of the Just-Pope 

heteroscedastic production ftmction (Just and Pope 1978). MacMirm and Holtmaxm (1983) 

derived more general conditions that applied to all production functions by extending 

Leland's (1972) Principle of Increasing Uncertainty to production uncertainty. Ramaswami 
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(1992) derived even weaker conditions needed to sign the marginal risk premium. Loehman 

and Nelson (1992) explicitly incorporated risk substitution and complementarity between 

inputs into the analysis, and as a result were able to sign comparative static derivatives that 

Pope and Kramer could not. 

However, focusing only on income (or yield) variability and risk aversion is only 

appropriate for certain specifications of the profit flmction. How stochastic factors enter the 

profit specification significantly affects the impact of risk on input demands. If profit is 

linear in the stochastic factors, then only risk averse firms adjust their input use in response 

to the uncertainty. However, if profit is nonlinear in the stochastic factors, even risk neutral 

firms adjust their input use to manage the risks. The Arrow-Pratt concept of risk neutrality 

implies neutrality only to income or profit risk. When profit is nonlinear in the stochastic 

factors, the willingness to pay to avoid risk and the impact of risk on input use are not solely 

determined by the how risk affects the variability of income. 

Profits that are nonlinear in stochastic factors can occur for many reasonable 

specifications of production uncertainty. The resulting response of risk neutral firms to 

production risk has been noted by many previous studies. Just (1975) specified a two part 

marginal cost function, with the non-stochastic part depending on planned output and the 

stochastic part depending on actual stochastic yield. The response of the expected profit 

maximizing risk neutral firm to the uncertainty depended "...critically on the nonlinearity of 

marginal cost..." (p. 351). Ratti and Ullah (1976) specified a production model with 

random service flows from applied inputs and, because profit was a concave function of the 

random variables, found that the risk neutral firm used less inputs than when service flows 

were non-stochastic. Antle (1983) presented various dynamic production models that result 
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in the nonlinearity of profit in the random variables, and noted the resulting relevance of risk 

even for risk neural firms. For a general model of production uncertainty, MacMinn and 

Holtmann (1983) defined the "technological risk premium" to describe the willingness to pay 

for certainty, measured in terms of the input response of a risk neutral firm to production risk. 

Babcock and Shogren (1995) discuss a similar concept, the "production premium," that 

measures the willingness to pay to resolve uncertainty concerning stochastic inputs. In their 

empirical analysis of nitrogen fertilizer use on com, they reported that the production 

premium ranges from 20-80% of the total willingness to pay for certainty for all production 

risk. 

The primary lesson to be leamed from this literature is that agricultural economists 

must carefully specify their models of stochastic production, so as to be true to the actual 

physical processes, not for the sake of econometric or theoretical convenience. Antle (1983) 

argues that "to increase the relevance of their models and methods,... agricultural 

economists need to understand specifically how risk affects agricultural production" (p. 

1099). Loehman and Nelson (1992) note that "specification of this production function 

should be based on physical relationships between inputs and sources of risk," (p. 220) and 

list such factors as weather and insects. The Just-Pope heteroscedastic production function 

(Just and Pope 1978) is widely used in empirical analyses because it does not impose 

structure on how inputs affect risk, but allows both risk reducing and risk increasing inputs 

(Just and Pope 1979, Love and Bucola 1991, Saha et al. 1994). However, it does impose 

linear production risk and those using it for empirical applications should note this property, 

particularly if it bears on the question addressed. 
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1.2.2 Effect of Crop and Revenue Insurance on Input Demand 

How crop and revenue insurance affect optimal input use is becoming an important 

issue, particularly as policy makers rely more on insurance to achieve their goals as 

traditional commodity support programs are phased out. The Federal Crop Insurance Reform 

Act of 1994 initiated the process of improving and expanding crop insurance in the United 

States. New revenue insurance products such as Crop Revenue Coverage (CRC) and 

Revenue Assiu-ance (RA) were developed and have become quite popular. An area-yield 

insurance program—Group Risk Program—has been redesigned as well. In addition, the 

1994 Act repealed the Ad Hoc Disaster Assistance Program and made catastrophic coverage 

a required minimum for producers participating in federal programs. 

Crop and revenue insurance create an additional factor that influences optimal input 

use. Besides considering how inputs change the marginal risk premium, optimizing 

producers consider how input use affects the probability and magnitude of the insurance 

indemnity. This second effect, the "moral hazard effect," provides incentives for input 

reduction, while the sign of the first effect, the "risk effect," depends on whether the input is 

risk reducing or risk increasing. For risk reducing inputs, both effects work in the same 

direction and an unambiguous reduction in optimal input use results. However, for risk 

increasing inputs the effects offset one another and which dominates is an empirical question. 

Quiggin (1991) suggested the theoretical possibility that crop insurance could 

increase input use, while Ramaswami (1993) formally demonstrated it for a general 

stochastic production process. In addition, Ramaswami conducted Monte Carlo simulations 

to determine which effect dominated for nitrogen fertilizer in com production. Crop 

insurance resulted in an increase of optimal fertilizer use only for low levels of coverage (< 
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50%) when yield variability responded positively to fertilizer use at twice the estimated rate. 

In a similar study, Babcock and Hennessy (1996) conducted Monte Carlo simulations with 

stochastic yields and prices and analyzed both crop and revenue insurance. Both types of 

insurance decreased the optimal nitrogen rate, with revenue insurance creating a slightly 

larger moral hazard effect. A negative con-elation between price and yield offset the impacts 

of insurance and smaller reductions occurred. 

Analyses based on observed producer behavior in general reach the same conclusion. 

Quiggin et al. (1993) estimate that crop insurance reduced expenditures on fertilizer and 

pesticides by 10% for U.S. com farmers. Horowitz and Lichtenberg (1993) estimated a 

probit model with survey data and reported a controversial nitrogen increase of 19% and 

pesticide expenditure increase of 21% for U.S. com producers purchasing crop insurance. 

However in a similar study. Smith and Goodwin (1996) identified probable specification 

errors in Horowitz and Lichtenberg's analysis and reported conventional results for the effect 

of crop insurance on the input use of Kansas wheat farmers. 

In general the existing literature shows that, if an input is sufficiently risk increasing, 

it is theoretically possible for per acre input use to increase with insurance coverage. 

However, for important inputs such as fertilizer and pesticides used for commodity crop 

production, the moral hazard effect dominates any offsetting risk effects and per acre input 

use falls with increases in insurance coverage. 

1.2.3 Effect of Commodity Programs on Input Demand 

Federal commodity programs affect optimal input use because of the income support 

provided, as well as the acreage allocation incentives and restrictions they create. Though 

the Federal Agriculture Improvement (FAIR) Act of 1996 ended the target price subsidy 
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program and its associated planting restrictions, other programs such as the loan rate program 

are still in place. Furthermore, subsidy programs exist in other important crop producing 

nations and may be re-instituted in the United States. 

The analysis of the impact of commodity programs on input use has been done in a 

manner similar to crop insurance. The general model of Hennessy (1998) decomposes the 

effects of income support policies into a wealth effect, an insurance effect, and a coupling 

effect. These are analogous to the three effects that Ramaswami (1993) used to decompose 

the impact of crop insurance—a mean effect, a risk reduction effect, and a moral hazard 

effect. Indeed, Hennessy's model is general enough to incorporate both traditional 

commodity programs and insurance programs. 

Hennessy derived the sufficient conditions in terms of the profit specification 

required to sign the comparative static effects of increasing income support on input use. 

The target price program and the coupled loan rate program were structured so that some 

inputs could reasonably satisfy the conditions needed for unambiguously increasing input use 

with increased income support. Monte Carlo simulations similar to Babcock and Hennessy 

(1996) indicated that traditional commodity programs increased nitrogen fertilizer rates 7-

10% for com production, with the insurance effect accounting for most of the increase. 

The FAIR Act also removed the acreage restrictions associated with the commodity 

programs. On the aggregate level, the response to this new "Freedom to Farm" has been a 

large increase in soybean acres, a reallocation of com acres within the Com Belt, and 

decreases in wheat, sorghum and hay acres (Babcock et ai. 1997). These acreage shifts imply 

changes in aggregate input demands due to different crop requirements. 
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At the individual producer level, the acreage allocation decision also affects the input 

use decision. The analysis of Babcock et al. (1987) indicates that ignoring the acreage 

allocation decision, or assuming that it occurs after the input use decision, leads to errors. 

Due to the specifics of their model of com and oats production, the error for nitrogen use and 

land allocation was rather small, but the associated errors for welfare analysis were 

substantial. To prevent these errors, whole-farm models that simultaneously make acreage 

allocatiufi .vr.d input use decisicnG arc . equired. I am unaware of any simultaneous analysis 

of acreage allocation and input use that includes the effects of insurance and/or conmiodity 

programs. 

The existing theoretical literature shows that the impacts of crop insurance and 

commodity subsidy programs on input use can be analyzed in essentially the same manner. 

Empirical analyses indicate that the traditional U.S. commodity programs provided 

incentives for increased per acre input use. Additionally, whole farm models are needed to 

account for the impact of acreage allocation decisions on per acre input use. 

1.2.4 Non-point Source Pollution Control 

Agricultural production generates non-point source pollution as a joint product or 

inherent externality. Agricultural producer's use of inputs for risk management and the 

incomplete consumption of applied inputs by stochastic production processes further 

increases agriculture's contribution to non-point source pollution. Given the ubiquitous 

nature of agriculture, non-point source pollution is the chief cause of impaired water quality 

in the United States (USEPAAJSDA, 1990). Regulation of non-point source pollution 

control is difficult for several reasons. The relation between input use and pollution 

generation is stochastic and site-specific. Polluters and regulators cannot observe local 
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pollution generation with reasonable accuracy. Regulators cannot observe producer behavior 

without incurring high costs. The aggregation of individual pollution generation into easily 

observed ambient pollution is a complex stochastic process. Since the nature of the problem 

makes command and control policies essentially unenforceable, recent federal and state 

legislation has focused more on using economic incentives to address the problem, (Braden 

et al. 1994, Malik et al. 1994, Wolf, 1995). The economic literature on non-point source 

pollution is vast and I will only touch on some key theoretical papers to place my work in 

context. 

Griffin and Bromley (1982) extended the standard point source pollution extemality 

results of economic theory to non-point source externalities and demonstrated the efficiency, 

under certainty and observability, of both incentive schemes and standards based on input use 

or pollution output. Shortle and Dunn (1986) demonstrated that at the individual firm level, 

under uncertainty and observability, incentives such as taxes or subsidies for management 

practices (including input use) are more efficient. Helfand and House (1995) analyzed the 

inefficiency from using uniform input policies (both standards and incentives) under spatial 

heterogeneity and found that they could be quite small in their model of lettuce growers in 

Califomia. 

Agency theory tools have been used to address the moral hazard problem resulting 

from unobserved producer behavior. Segerson (1988) used the results of Holmstrom (1982) 

to propose individual penalties on a group of producers if observed ambient pollution 

exceeded some specified standard. The scheme is efficient, but substantially increases the 

income risk of producers and collects penalties that far exceed environmental damages, so 

that it is not budget balancing (a problem inherent in Holmstrom's original solution). 
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Xepapadeas (1991) used the results of Rasmusen (1987) to solve the budget balance problem, 

If ambient pollution exceeds the standard, a penalty is randomly imposed on a sub-group of 

possible polluters and the collected money redistributed among the rest of the group. 

Herriges et al. (1994) corrected a significant error in his propositions. Xepapadeas (1992) 

further demonstrates that the static solution is no longer efficient in a stochastic dynamic 

context. Bystrom and Bromley (1998) show the potential reduction in information costs for 

regulators by using a group penalty and allowing members to trade abatement among 

themselves. The primary criticism of these proposals derived from agency theory is that they 

are politically, legally and institutionally not feasible. 

Since pollution generation is difficult to observe, a pollution permit trading program 

is not applicable to agricultural non-point source pollution. A modified permit system of 

point/non-point source pollution trading has been developed, in which point source polluters 

pay potential non-point source polluters to change production practices (including input use) 

to reduce expected pollution in the area. In essence the program is an input subsidy program, 

with a private funding source that incurs the transaction costs of obtaining participation. But 

since it is market-based, it is more efficient than a uniform input subsidy. However, because 

of uncertainty in non-point source abatement efficiency and enforcement costs, determining 

the optimal ratio at which point source and expected non-point source pollution are traded is 

unclear (Malik et al. 1993). Other technical and institutional problems have led to the 

general failure of the five point/non-point trading programs currently in existence; no trades 

are occurring and emissions exceed ambient pollution goals (Hoag and Hughes-Popp 1997). 

In general, this theoretical literature indicates that incentive-based input policies are 

the most efficient non-point source pollution control method. Furthermore, such policies are 
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more practical to implement in the current institutional structure. These polices are not 

market based, so potential inefficiencies arise from using uniform subsides and taxes. 

However, these inefficiencies are potentially negligible once monitoring, enforcement and 

other transaction and information costs have been included. 

L2.S Best Management Practices and Input Use 

Policies intended to reduce agricultural non-point source pollution have traditionally 

focused on encouraging farmers to adopt best management practices (BMPs) that reduce 

pollution generation. Since BMPs typically involve increasing the efficiency of input use, 

these policies are consistent with the theoretical findings previously discussed. As an added 

benefit of BMPs, producer profits generally increase as a result of more efficient input use. 

Nevertheless, many farmers do not adopt BMPs, despite the gain in profits. Typical 

explanations include a lack of information concerning the BMP and its profitability; time, 

liquidity, labor and managerial constraints; as well as aversion to the numerous risks and 

changes involved in adopting new production practices (Nowak 1992, Westra and Olson 

1997). 

To encourage the adoption of BMPs, voluntary means have traditionally been used, 

such as information-based methods or financial incentives. Extension education materials 

and demonstration projects provide information under the assumption that informed fanners 

will voluntarily adopt the BMP. Financial incentive schemes include cost-sharing or simple 

subsidies for BMP adoption. For example the 1990 Food, Agriculture, Conservation and 

Trade (FACT) Act initiated the Water Quality Incentive Program for selected watersheds, 

under which participating farmers receive per acre subsidies or "green payments" for 

adopting specific BMPs such as soil nutrient testing or integrated pest management (IPM). 
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As an example of a state level initiative. Wolf (1995) discusses a concentrated legislative 

effort in Wisconsin to reduce non-point source pollution with cost sharing mechanisms for 

BMP adoption. Despite being well funded and rather sophisticated, institutional and 

enforcement problems with the program led to inadequate participation and as result, little if 

any improvement in ambient water quality was achieved in the priority watersheds. 

Current subsidy or green payment programs have problematic inefficiencies built into 

them. Since they are not market based, but fixed take-it-or-leave-it subsidies, it is not 

possible to estimate BMP adoption as a function of payments. Furthermore, without a 

market, a well informed central bureaucracy is required for the programs to be efficient, 

which is costly to maintain and not as effective at responding to changes in local conditions. 

Green payments are also an expensive method to promote BMP adoption. With the take-it-

or-leave-it program. Cooper and Keim (1996) estimate a subsidy of about $30 per acre is 

needed to get 50% of producers currently not using a split nitrogen application to adopt this 

BMP. To get 50% participation for other BMPs such as IPM, manure testing, or legume 

crediting, they estimate a green payment of $50-$60. Lastly, a green payment program 

creates an incentive for producers already using the BMP to quit doing so, then re-adopt the 

practice to obtain the green payment. 

Conservation compliance requirements, initiated with the 1990 FACT Act and 

continued with the 1996 FAIR Act, have significantly reduced soil erosion, as intended, but 

are not as effective at reducing other non-point source pollutants (Babcock et al. 1997). 

Tweeten and Zulauf (1997) have proposed more general envirormiental compliance 

requirements, but with the end of commodity program transition payments in 2002, such a 

program will become too expensive to fund directly. If environmental compliance were 
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mandated, designing a feasible policy would be difficult and the program would suffer from 

enforcement and institutional problems such as discussed by Wolf (1995). 

The general consensus of this literature is that attracting sufficient participation to 

obtain significant reductions in pollution with green payment subsidy programs is 

prohibitively expensive. Furthermore, the political feasibility of such a program is 

questionable, given the likelihood of enforcement and institutional problems. 

1.2.6 Green Insurance 

Green insurance is insurance that encourages agricultural producers to adopt a 

specific BMP by providing coverage against losses occurring as a result of BMP failure, 

losses that may have been avoided had the status quo practices been used. Green insurance 

focuses on the pertinent risk factors that lead to failure of the BMP and contribute to its non-

adoption. These risks can be broadly classified into three types—innovation risk, testing 

risk, and timing risk. 

A producer must implement a new and unfamiliar production practice and modify it 

to the unique characteristics of his land and operation. The potential of a costly innovation 

error is real and aversion to this risk is cited as a reason BMPs are not adopted (Nowak 1992, 

ACIC 1998a). Green insurance addresses this risk by requiring that insured producers use 

the technical assistance and/or services of trained third parties such as certified crop 

consultants and approved extension agents. 

Even when properly implemented, a BMP can fail. A BMP typically uses inputs 

more efficiently because it requires producers to first collect information concerning the true 

input needs of a crop. However, sampling and measurement errors make this information an 

imperfect signal concerning the true state of the world. As a result, the BMP can fail when it 
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indicates that less inputs are needed than is truly the case. Green insurance provides 

coverage for producers against losses that occur as a result of sub-optimal input use due to 

testing enors. 

A BMP can also fail because it typically requires postponing input applications until 

the crop needs the inputs and/or information has been collected. As a result, a smaller 

window of time exists during which inputs can be applied for optimal effectiveness. 

Conditions beyond the producer's control, particularly weather, can prevent input application 

and result in failure of the BMP. Green insurance provides coverage against this timing risk 

by paying indemnities when weather prevents timely input application or otherwise results in 

sub-optimal input use. 

Green insurance is an incentive based input policy, and as such has the previously 

discussed theoretical advantages of these policies. An additional advantage green insurance 

has over subsidy or tax schemes is its greater cost efficiency for providing incentives for 

BMP adoption. A subsidy is paid regardless of the outcome of the BMP, while green 

insurance only pays when a BMP fails. As long as the expected indemnity minus the 

premium is less than the subsidy, green insurance is on average more cost efficient for a risk 

neutral insurer. In addition, since it provides risk sharing benefits, green insurance provides 

welfare gains that subsidies do not. Thus a dollar spent on green insurance provides greater 

incentives for BMP adoption and welfare gains than a dollar spent on a green payment. 

Green insurance also attains the efficiency benefits of a market based policy. As a 

market product, producers choose their level of coverage and set some of its terms. Thus the 

insurance more effectively fulfills their risk management needs than a uniform policy or a 

take-it-or-leave-it offer. The market allows producer's private information concerning the 



www.manaraa.com

15 

site-specific characteristics of their land and the constraints their farm operations face, as 

well as their own risk preferences, to provide a more efficient product. An additional benefit 

of green insurance over green payment subsidies is that no longer are there incentives for 

those currently using the BMP to stop and re-adopt in order to obtain program benefits 

Green insurance also compares favorably to crop and revenue insurance as a means to 

reduce non-point source pollution. As previously discussed, crop and revenue insurance 

generally lead to a reduction in per acre input use because of the combined moral hazard and 

risk effects. Green insurance also creates analogous effects that reduce input use. The moral 

hazard effect leads to a reduction in input use, since it increases the likelihood of receiving a 

payment. Also producers can use green insurance as a substitute for inputs to manage risk, 

further reducing input use. Additionally, green insurance has an adoption effect that crop and 

revenue insurance do not have. By adopting the BMP, producers adopt a more input-

efficient technology and reduce input use. 

How the net effect of green insurance compares to the net effect of crop and revenue 

insurance is an empirical question that must be explored. Intuitively, green insurance should 

reduce input use and non-point source pollution more than crop or revenue insurance. Crop 

and revenue insurance aggregate many of the risks a producer faces and pay indemnities only 

when, as a whole, the various risks result in an outcome below some threshold. This 

aggregation in usefiil to achieve producer welfare goals, but to provide incentives for BMP 

adoption and pollution reduction, targeting the pertinent risks is more efficient. 

An additional advantage of green insurance is that private companies may find it 

profitable to provide the insurance, without the need of premium subsidies as crop and 

revenue insurance require. Some green insurance products could potentially be provided in a 



www.manaraa.com

16 

manner similar to current hail and fire insurance policies, which are a common part of crop 

risk management strategies, but not federally subsidized. 

Given this general description, green insurance seems to be a potentially useful 

method to reduce agricultural non-point source pollution, with several advantages over 

current and proposed control policies. Green insurance is a more efficient and cost effective 

marmer to provide incentives for reducing non-point source pollution control, because it 

focuses on the pertinent production risks and explicitly takes the risk management aspect of 

input use into account. However, a more formal theoretical and empirical analysis is 

required for a rigorous assessment of green insurance. 

1.3 Overview of Green Insurance for Corn Rootworm 1PM 

The idea of insurance for adoption of new or more efficient agricultural technologies 

is not a new idea, at least for IPM (Turpin 1974). However, recently there has been a 

renewed interest in developing and marketing such insurance products by insurance 

companies, the seed industry, government agencies, and academics. Among the products 

proposed or studied have been insurance for no-till farmers, insurance for various nutrient 

management BMPs, IPM insurance, and refuge insurance for producers planting transgenic 

crops. Indeed, new insurance products of this sort were offered for the first time during 1998 

and others are currently being developed (ACIC 1998b). This dissertation presents an 

empirical analysis of a green insurance program for com rootworm IPM. In this chapter, zm 

overview of com rootworm biology and IPM for com rootworm control is first presented, 

followed by a general discussion of IPM insurance. 

The northern com rootworm {Diabrotica barberi Smith and Lawrence) and the 

western com rootworm {Diabrotica virgifera virgifera LeConte) together comprise the most 
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damaging insect pest to com in the United States. In general, both species are found 

wherever com is grown, but are centered in the Com Belt where they are prevalent (Chiang 

1973). Managing com rootworm accounts for the largest expenditure for insect control in 

com production (Pike et al. 1995), with Metcalf (1986) estimating the annual cost of yield 

losses and control expenses at $1 billion. Historically com rootworm has been a pest for 

non-rotated com acreage and the traditional management practice has been the application of 

soil insecticides. Becker and Stockdale (1980, cited in Foster and Tollefson 1986) report that 

in 1979, soil insecticides were applied for com rootworm control to 6.7 million acres of com 

in Iowa (approximately 50% of total com acreage). More recently. Pike et al. (1991, cited in 

Gray and Steffey 1998) report that in Illinois, 2.5 million acres (approximately 25% of total 

com acreage) of non-rotated com are treated annually with soil insecticides. Historically, the 

most common types of soil insecticides applied have been organophosphates and carbamates, 

though others have recently become available. As a required by the Food Quality Protection 

Act of 1996 (FQPA), the EPA has begun reassessing the registration and safety standards for 

pesticides in these two groups. The new more stringent risk criteria established by the FQPA 

have led the EPA to consider barming these pesticides. 

Adult com rootworm emerge from their underground pupal cells over a period of 

about six weeks, beginning as early as late June. Adults feed on com silk, pollen, leaf tissue, 

and exposed kemels, and may cause economic damage, especially for seed com production. 

Mating begins soon after emergence and oviposition (egg laying) starts 10-12 days after 

emergence. Females deposit eggs in soil from mid summer to as late as September, primarily 

in com fields. The eggs lie dormant (diapause) in the soil through winter and hatch the next 

spring. Hatch can occur as early as mid-May in warm years, or as late as mid-June for cool 
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years. Larvae feed exclusively on com roots; if none are found the larvae die. The larvae 

pass through three stages (instars), with first and second instars tunneling from root tips to 

the plant base and leaving identifiable feeding scars. Third instars typically feed on large 

roots near the stalk and damage brace roots that enter the soil. Third instars then pupate in 

earthen cells and emerge as adults beginning as early as late June. For a more detailed 

overview of the com rootworm life cycle, see Chiang (1973) and Krysan (1986). 

Larval feeding on roots causes the most significant damage from com rootworm. 

Root damage reduces the flow of water and nutrients up the plant stalk, thus reducing plant 

vigor and yield. Feeding scars also allow entry of pathogenic fungi into roots, further 

reducing yields. Furthermore, damage to large roots causes com plants to fall over (lodge), 

particularly under windy or wet conditions. Lodging reduces yields, because lodged plants 

do not perform as well as non-lodged plants for several reasons (Spike and Tollefson 1991). 

Lodging also makes harvesting more expensive, since the combine must move more slowly 

to pick up lodged plants, and additional yield reduction occurs because some ears carmot be 

harvested from severely lodged plants. 

Traditionally, rotations were an effective means of com rootworm control, since eggs 

were laid exclusively in com fields. The following year, eggs would hatch and the larvae 

would not find com roots and die. However, both northem and westem com rootworm have 

become increasingly adapted to common two-year com rotations. In the westem Com Belt, 

the northem com rootworm has developed an extended diapause, in which eggs remain 

dormant for two winters and larvae hatch occurs when com is again planted in a field. In 

1962 in Mirmesota, Chiang (1965) found 2% of field collected northem com rootworm eggs 

hatched after two winters. By the 1980's Krysan et al. (1984) found as many as 40% of eggs 
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hatched after two winters in South Dakota. More recently, the extended diapause has been 

reported in Iowa as well. In the eastern Com Belt, variant populations of western com 

rootworm have adapted to common com rotations by laying their eggs in soybean and alfalfa 

fields. Initially reported in the early 1990's in Illinois and Indiana (Gray et al. 1996, cited in 

Gray and Steffey 1998), by the summer of 1998 the variant population had spread to southern 

Michigan and westem Ohio (Michigan State University Extension 1998). As a result of 

these adaptations of both species, application of soil insecticides on rotated com is becoming 

more common. 

The recommended Integrated Pest Management (IPM) technique for com rootworm 

control is to scout for adults during July and August (since other stages of the pest live 

underground and are difficult to sample). If the maximum number of observed adults per 

plant exceeds the economic injury level (EIL), treatment with a soil insecticide is 

recommended for com planted in the field the following spring. The typical EIL 

recommended by entomologists is one adult com rootworm beetle per plant. However, using 

this IPM strategy is not without risks. Stamm et al. (1985) found that using this EIL had a 

prediction accuracy of 80% and 50% in the two locations in Nebraska studied. Using a lower 

EIL, between 0.75 to 0.90 beetles per plant, improved prediction accuracy to greater than 

90%. Foster et al. (1986) used an expected profit maximization criterion to calculate the 

value of the scouting information for several fields in three counties in Iowa. They 

concluded that scouting has zero expected value, since the information does not change the 

ex ante probability estimates of economic losses enough to justify collecting the information 

or to justify not applying soil insecticide. Therefore, they conclude that the optimal strategy 

for com rootworm control in Iowa is to always apply soil insecticide at plant. Naranjo and 
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Sawyer (1989b) use a simulation model built from laboratory and field data and conclude 

that the optimal EIL changes depending on the planting date, day of peak com flowering, and 

the general temperature pattern of the year (above average, average, below average). 

Nevertheless, extension entomologists continue to support scouting and the use of a simple 

EIL (not necessarily one), and professional crop consultants use EIL's as well (Gray and 

Steffey 1997). 

The green insurance program analyzed in chapter 5 encourages producers to adopt 

IPM for com rootworm control by removing some of the risk associated with the use of IPM. 

Com rootworm damage is typically assessed by the use of the root rating system, either on a 

scale of 1-6 or a scale of 1-9 (Mayo 1986), or by the percentage of the com stand lodged. 

Yield loss due to com rootworm damage is correlated with the observed root rating and the 

lodging. When 1PM scouting indicates that soil insecticide is not required, producers can 

purchase green insurance coverage and follow this IPM recommendation. Later, if a 

producer believes that significant com rootworm damage has occurred (because the IPM 

recommendation failed), the insurance pays an indemnity based on the observed root rating 

and/or lodging. The specific details of the production process and insurance, as well as the 

results of the analysis, are presented in chapter 5. 
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CHAPTER 2: THEORETICAL ANALYSIS OF GREEN INSURANCE 

2.1 Introduction 

This chapter presents a general model of stochastic production for use in the 

theoretical analysis of BMP adoption and green insurance. The optimization program for a 

representative producer is developed for various scenarios, then used to analyze the impact of 

BMP adoption and green insurance on adoption incentives and optimal input use. Results are 

summarized in several propositions, with examples from com production used to provide 

intuition. 

2.2 General Model of Stochastic Production with a BMP and Green Insurance 

2.2.1 Model Description and Sequence of Events 

The representative producer modeled here manages a homogeneous unit of land 

normalized to one acre, all devoted to the production of a single crop. All profit is converted 

to physical output by normalizing the crop price to one and all other income and wealth is 

ignored. Per acre profit is denoted ;Tand the producer derives utility from this profit 

according to the function u(7t), where m'> 0 and u"< 0.' The profit specification depends on 

the production technology used and whether insurance is purchased. However, for all 

specifications, a production process transforms a purchased input x and naturally occurring 

stochastic inputs ^and £• according to the crop growth function f(x,9,e), where > 0,yic ^ 0, 

fe > 0, and fe > 0.^ No assumptions are made concerning the other derivatives off(x, 9, s), but 

by assumption, ^and fare independent. 

' Throughout this dissertation, single and double primes indicate first and second derivatives 
respectively. 
- Throughout this dissertation, single and double subscripts denote furst and second partial 
derivatives with respect to the subscripted variable(s) respectively. 
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From the producer's perspective, ^is a stochastic input that can potentially be 

observed if the information is collected, but the information is imperfect. For example, Ocan 

be the results of a soil nitrogen test in the spring, or the observed soil moisture before 

irrigation, or the nutrient value of manure from a test sample. However, these signals are 

imperfect measures of the true input availability, due to sampling error or other limitations of 

the information technology. The stochastic input e is a random production shock that 

captures uncertainty from two sources—^first the information technology is not able to 

eliminate all uncertainty concerning input availability and second final input availability is 

determined after information concerning 6 is collected. For example, e can be weather or 

soil microbial events occurring after the soil sample submitted for testing was collected, or 

sampling error for a manure nutrient test, or variability in soil moisture across a field. 

An extended example for com rootworm provides intuition for this general theoretical 

model and prepares for the empirical application presented in later chapters. Define the 

production function f(x, 9, e) as the proportion of com yield saved from (or not lost to) com 

rootworm damage. Then x is the quantity of com rootworm insecticide applied, or 

altematively, the frequency of application or the proportion of acres treated. Once properly 

defined, the number of com rootworm adults observed via scouting is the stochastic input 0. 

As the observed number of adults increases, the proportion of yield lost to com rootworm 

damage increases. However, since f(x, O.s), the proportion of yield saved, is one minus the 

proportion lost, as the number of observed adults increases, the proportion saved decreases. 

Thus 6 must be defined as the inverse (or the negative) of the observed number of adults, so 

that/s > 0. Lastly, the uncertainty in com rootworm damage not explained by the observed 
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number of adults or eliminated by insecticide applications is captured in the random shock e. 

This uncertainty can be due to events occurring between scouting and com rootworm 

damage, or between insecticide application and com rootworm damage. Alternatively, this 

random shock can be due to sampling error in scouting or due to variability in the application 

rate of insecticide, or the persistence of the insecticide in the soil, or other such factors. The 

main point is that several factors generate uncertainty in com rootworm damage that are 

independent of the observed adults and cannot be eliminated by scouting for adults or 

insecticide applications. 

The representative producer chooses to utilize either the status quo production 

technology or the BMP, and, if using the BMP, whether to purchase insurance. For these 

three situations, the producer chooses x as follows: (1) for the status quo production 

technology x is chosen without observing 6, (2) for the BMP x is chosen after observing 6, 

and (3) for the BMP with insurance x is chosen after observing ^and purchasing insurance. 

In all scenarios, the producer uses available information to choose x at an exogenous per unit 

cost of r. Table 2.1 summarizes the sequence of events and the profit specifications for these 

three scenarios. 

For the status quo and BMP scenarios, realized values for the stochastic inputs 9and 

fare obtained from known distributions G(9) and H(e) respectively. If the producer uses the 

BMP technology, the value of 6 is observed at an exogenous constant cost c. All inputs are 

then combined by the natural production process to determine crop output according to the 

ftmction f(x, 0,s). Lastly, profit and the associated utility are determined according to the 

appropriate profit specification, as reported in Table 2.1. 
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Table 2.1. Sequence of events for each production technology 

Status Quo BMP BMP with Insurance 
Choose X* 

^realized 0 realized 
Observe 0 at cost c 

0 realized 
Observe 0 at cost c 
Pay premium M(/3) 

Choose x*(0,/3) 
s realized 

Choose 
£ realized s realized 

s realized 
rr(x*,d,£) = 

f(x*9.s)-rx* 
7t(0,e) = 

f(x*(0), 0,£) -rx*(0) - c 
n(0£,fS^ = 

f(x*(0,P),0£) -rx*(0,P) - c 
-M(P)+I(s,l3) 

After producers using the BMP have observed 0, but before x has been chosen, green 

insurance can be purchased by paying the actuarially fair premium M(P), where is an 

exogenous index of insurance coverage such that M' > 0. The insurance indemnity received 

depends on the level of coverage p and a stochastic signal s according to the function I(s,P), 

where /j > 0 and Ip > 0. The signal j is an imperfect measure of yield loss due to BMP failure 

and realized values are obtained from the known distribution fV(s\£), after the producer 

chooses x, but before final profit is determined. Table 2.1 summarizes the sequence of events 

for the production process when the BMP technology is used with green insurance coverage. 

BMP failure occurs in two situations—^when the BMP misleads the producer into 

applying too little or too much x. For the sake of argument assume that all inputs are 

substitutes {fxc < O,fx0 < O^feo < 0); these assumptions are not maintained throughout, but 

used here to make the explanation clearer. When the observed value of 0is large, this 

indicates that a small amount of x is required. However if the realized value of fis also 

small, realized output is lower than anticipated and the BMP failed because it misled the 
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producer into applying too little x. Conversely, if the observed 0 is small, a large amount of x 

is applied. Then if the realized s is also large, realized output is larger than anticipated and 

the BMP failed because it misled the producer into applying too much x. As a result, since 0 

and e are independent, BMP failure is associated with extreme realizations of e, but does not 

occur uith every extreme realization. Low realizations of sare correlated wth applications 

of too little X and high realizations of s are correlated with applications of too much x. 

For example, if ^ is a measure of available soil nitrogen, when ^is high, producers 

apply little extra nitrogen fertilizer and vice versa. However, if the sampling error for the soil 

test is such that the actual soil nitrogen is lower than the test indicates, the producer applies 

too little nitrogen fertilizer, and conversely, if the actual soil nitrogen is higher than the test 

indicates, the producer applies too much fertilizer. This sampling error is captured by s. 

Altematively, events occurring after the application of fertilizer also are captured by the 

random shock e. If substantial rainfall occurs after fertilization, or microbial denitrification 

is unusually high, the soil nitrogen available for crop growth will be lower than anticipated, 

and the producer would have been better off following the status quo practice of over 

applying fertilizer at or before planting. Conversely, unusually dry weather or substantially 

reduced microbial denitrification generate the opposite result—the application of 

unnecessary nitrogen. 

Producers have been primarily concerned with input deficiencies and associated yield 

losses. Input surpluses are usually less costly to producers, since yield loss is minor (if it 

occurs at all) and typically difficult to detect. BMP failures that cause input deficiencies are 

more of a concern to researchers and policy makers as well, since such failures create a bad 
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reputation for the BMP and make it less likely to be adopted. Furthermore, BMP failures 

resulting in over application are typically "good" failures, since such failures still often imply 

application rates lower than for the status quo practice. As a result, in the general theoretical 

model presented here, BMP failures that result in over application of the input x are ignored 

and the focus is on BMP failures that result in input deficiencies. Given this focus, low 

realizations of £ are correlated with high losses due to BMP failure and vice versa. 

As an imperfect measure of yield loss due to BMP failure, the signal s must be 

negatively correlated with sas well, since low realizations of fare correlated with high 

losses and vice versa. An underlying joint probability density function q(£,s) describes this 

stochastic relationship between s and e. Extending Bayes' theorem to the continuous case 

(Freund 1992), this joint density f\mction can be factored into the product of the marginal 

density function of f-and the density function of s conditional on sr. q(£,s) = h(£)w(s\£). 

Alternatively, the conditional density can be derived flmctionally by assuming that 5 is a 

function of fand another random variable independent of s, such that s = 4). 

Assume < 0 so that s and fare negatively correlated, but note that because ^and fare 

independent, not all uncertainty in s is due to e. The function if/ can be as simple as 5 = -£• + 

g. where q is white noise measurement error resulting from the technology used to measure e. 

Of course, other specifications of ^/are possible, as well as other explanations for the only 

requirement is that not all uncertainty in s be due to s, else s and s are perfectly correlated. 

Given s = y/(£,^ and the required regularity conditions on y/, the transformation of variable 

technique or other such methods can then be used to obtain w(s\s), the density fimction of s 
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conditional on e. This conditional density function captures all effects of son s, on the mean 

as well as the higher moments. 

Specific signals that measure yield losses associated with BMP failures depend on the 

BMP. For nitrogen management in com production, the end of season cornstalk test 

measures the level of nitrogen in cornstalks and indicates if the com plant was nitrogen 

deficient during growth (Varvel et al. 1997, Blackmer and Mallarino 1996). Similarly, a 

chlorophyll test indicates if a com plant is nitrogen deficient throughout the growing season 

(Varvel et al. 1997). For insect damage, various measures exist that are correlated with yield 

loss. For com rootworm, the root rating measures root damage due to com rootworm, while 

for European com borer, the number of cavities per plant, or inches of tunneling per plant, 

are measures of damage due to com borers. For weeds, typically some measure of weed 

density is used and correlated with yield losses due to competition from weeds. Other such 

signals exist for other crops and practices, or could be developed if the need arises. 

In this model, the realized value of fcan be determined ex post from realized crop 

output by inverting the crop production function f(x,d,£) and solving for £. However, 

insurance indemnities are not based on observed output because of moral hazard problems 

associated with such a program. Yields are difficult (and costly) to observe accurately and 

producers can affect observed yields in response to incentives they face. Traditional yield-

based crop insurance programs are not immune to this moral hazard problem and as a result 

require subsidies and low levels of coverage (high deductibles) for private insurance 

companies to provide them. Since BMP failures generally do not result in substantial yield 

losses, producers would need a high level of coverage to make a yield-based green insurance 

worth purchasing. However, the moral hazard problem at high levels of coverage is too 
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severe for private provision of the insurance. From an insurance provider's perspective, the 

ideal signal is highly (negatively) correlated with actual yield losses associated with BMP 

failure, but is not subject to moral hazard. If the signal is not sufficiently correlated with 

actual yield losses, the insurance risk reduces the value of the insurance to producers, and if 

the moral hazard problem is too severe, private provision is not reasonable. 

2.2.2 Derivation of the Optimal Input Level for Each Production Technology 

2.2.2.1 Introduction 

Assuming that the representative producer maximizes expected utility, the 

optimization problem for each production technology is stated. First order necessary 

conditions that implicitly define optimal input levels for each technology are derived, as well 

as the associated second order sufficient conditions. These results are used for the analysis in 

the next sections. 

2.2.2.2 Status Quo Production Technology 

For the status quo production practice, the producer must choose one constant value 

for X that is ex ante optimal over all realizations of ^and e. The producer determines this 

optimal input level x* by solving the following expected utility maximization problem: 

I I 
Max J \u{7:)dH{s)dG(,e) (2.1) 
' 0 0 

where TZ =f(x, 9, s) - rx and H(£) and G(6) are the (cumulative) distribution functions of s and 

0 respectively. The first order necessary condition is: 

I 1 
J J"' [/; - r\iH{£)dGi9) = 0 (2.2) 
0 0 

which implicitly defines the optimum x*. The second order sufficient condition is: 
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/ /(«• '[f.-rl+W /„ )iH{e)dG{9) < 0 (2.3) 
0 0 

which is satisfied since u'> 0, u"< 0, and< 0 by assumption. 

2.2.2.3 BMP Production Technology 

The producer using the BMP knows the value of ^and must choose a decision rule 

x*(^ that is ex ante optimal over all realizations of s. The expected utility maximizing 

producer determines this decision rule by solving the following optimization problem, 

treating das an exogenous parameter: 

I 
Max (2.4) 
' 0 

where ;r =f(x,  d,e)-rx-c.  The first order necessary condition is: 

{«'[/;-r]c///(f) = 0 (2.5) 
0 

which implicitly defines the optimal decision rule x*(6). The second order condition is: 

J(""L/;-'-r+"'/«Ww<o (2.6) 
0 

which again is satisfied since w '> 0, m "< 0, and^ < 0 by assumption. 

2.2.2.4 BMP Production Technology with Green Insurance 

The producer using the BMP who has purchased green insurance knows the values of 

9 and and must choose a decision rule x *(9, p) that is ex ante optimal for all realizations of 

e and 5. The expected utility maximizing producer determines this decision rule by solving 

the following optimization problem, treating 9 and fias exogenous parameters: 
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1 I 
Max ^^u{7z)dW{s\e)dH{£) (2.7) 
' 0 0 

where n =f(x,  6,s)  -rx-c- M(p) + I(s,P) and W(S\E) is the (cumulative) distribution 

function of s conditional on e. The first order necessary condition is: 

I J"' IX - rWis I £ ) d H i s )  = 0 (2.8) 
0 0 

which implicitly defines the optimal decision Tu.lex*(d,^. The second order condition is: 

I  j("' ' [ / . -rf+W /„ }iW{s I s )ciHi£) < 0 (2.9) 
0 c 

which again is satisfied since «'> 0, u"< 0. and Tit < 0 by assumption. 

The conditions stated in (2.8) and (2.9) assume that the producer cannot influence 5 

through X by affecting its distribution. Formally, I = 0 is a necessary condition 

for expressions (2.8) and (2.9) to be of this form. This assumption implies that the green 

insurance program is not subject to a moral hazard effect, since the producer carmot affect the 

distribution of the indemnity received. Situations for which it may be desirable to have a 

green insurance program subject to a moral hazard effect are discussed later in this chapter. 

2.3 Theoretical Analysis of Adoption Incentives 

2.3.1 Introduction 

In this section, producer incentives to adopt the BMP and purchase green insurance 

are examined and sufficient conditions that ensure an expected utility maximizing producer 

has an incentive to adopt the BMP and/or purchase green insurance are summarized in two 

propositions. A criterion for determining when green insurance is more cost effective than 
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green payments for incentive provision for BMP adoption is then summarized in a third 

proposition. Next follows an analysis of the impact of BMP adoption and the various policy 

instruments on optimal input use. Determining the sign of the adoption effect is analytically 

intractable; however, three propositions summarize conditions that allow determination of 

the sign of the wealth effect, the risk effect and the moral hazard effect on optimal input use. 

2.3.2 BMP Adoption Incentives 

Assuming that producers maximize expected utility, a producer has an incentive to 

adopt a BMP if the expected utility from using the BMP technology exceeds that of the status 

quo technology. The optimization program expressed in equation (2.1) defines the expected 

utility for the status quo technology. However, the optimization program expressed in 

equation (2.4) only yields the expected utility for the BMP technology conditional on a 

specific realization of G. This optimization program must be integrated over all possible 

realizations of 9xo obtain the expected utility for the BMP technology. Using (2.1), define 

the expected utility for a producer using the status quo technology as; 

where TT = f(x, 9, e) - rx. Using (2.4), define the expected utility for a producer using the BMP 

technology as: 

where n = f(x, O.e) -rx-c. 

Certainty equivalent returns {CER) are a money metric measure of utility under 

uncertainty and are defined implicitly by u(CER) = E{u(7r)]. Intuitively, CER are the certain 

I I 
EU^ = Max I ^u{7r)dH{£)dG{6) 

X • • 
- 0  0  

(2.10) 

UMax \u{7t)dH{e) WG(^) (2.11) 
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income required to make the producer as well off as when he or she is facing the specified 

uncertainty. An explicit expression for CER for each production technology can be obtained 

by inverting the utility function: CERSQ = U'(EUSQ) and CERBMP = U'(ELIBMP). Next define 

the willingness to pay (WTP) to change from the status quo technology to the BMP as: 

WTPSQ.BMP = CERBMP - CERSQ. Given these definitions, producer incentives to adopt the 

BMP can be summarized in the following proposition: 

Proposition 1: If BMP information collection is costless (c = 0), producers currently 

not using the BMP technology have some incentive to adopt the BMP technology. If 

BMP information collection is costly (c > 0), producers who have a positive 

(negative) willingness to pay— WTPSQ.BMP > 0 —have an incentive (disincentive) 

to adopt the BMP technology. 

Proof: For the costless information case, it must be shown that producers have at 

least as high an expected utility when using the BMP as when using the status quo 

technology, i.e. EUBMP ^ EUSQ, or H Max ^u{7r)dH{£) ]dG{e) > 

Max 
1 
\^u{_7t)dH{e)dG{ e )  , when c = 0. No formal mathematical proof is provided, but a 

verbal argument suffices since the it is rather intuitive. The proposition follows from the fact 

that the expected value of maximums must equal or exceed the maximum of expected values. 

See Marschak (1954) for a discussion and a formal proof. Intuitively, the proposition follows 

because the producer using the BMP technology has the less restricted optimization program. 

The producer using either production technology optimizes over the same set of functions. 

However, for the BMP technology the producer solves for an optimal decision rule x*(^, but 
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for the status quo technology the producer is restricted to a solution that is a constant fianction 

X*. Alternatively, note that the producer using the BMP technology can always use the status 

quo optimum x* and receive the same ex ante payoff, but has the option to choose a different 

X in response to the observed ^and obtain a higher payoff. 

For the costly information case, the proposition follows because certainty equivalent 

returns are a money metric for expected utility. Thus WTPSQ,BMP is a money metric of the 

expected utility increase due to BMP adoption and as such provides a monetary measure of 

the incentive to adopt the BMP. If WTPSQ.BMP > 0, then CERBMP > CERSQ and the producer 

obtains greater expected utility using the BMP technology and has an incentive to adopt the 

BMP. If WTPSQ.BMP < 0, then CERBMP < CERSQ and the producer obtains less expected utility 

using the BMP technology and has a disincentive to adopt the BMP. This completes the 

proof 

The WTPSQ.BMP provides a monetary equivalent of the incentive to adopt the BMP, 

however, WTPSQMMP cannot be directly compared to the cost c because of wealth effects 

generated by the certain cost c. As c increases, the producer has lower initial wealth, which 

can affect producer risk aversion. As a result, though the producer faces the same uncertain 

production process as when c = 0, certainty equivalent returns can decrease more or less than 

c due to the change in risk aversion. However, for two special cases wealth effects do not 

occur and direct comparisons between WTPSQ.BMP and c are possible, as sunmiarized in 

Corollaries 1 and 2. 

Corollary 1: If BMP information collection is costly (c > 0), risk neutral producers 

have an incentive (disincentive) to adopt the BMP technology if the expected profit 
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using the BMP technology with costless information exceeds the expected profit using 

the status quo technology by at least (less than) the cost c. 

Proof: Denote the expected profit for producers using the status quo technology as 

E7t^ = E[f{x*,0,e)-rx*] and denote expected profit for producers using the BMP 

technology when c = 0 as En= £[/(x• (0),0,s)  -rx*{9)].  Risk neutral producers 

maximize expected profit, so the difference in expected profit when using the two production 

technologies directly measures producer incentives to adopt the BMP technology. Thus 

when c > 0, if EK^^^ - EK^^^ > C , the producer has an incentive to adopt the BMP 

technology, and if ETtg/^ - En^^, < c, the producer has a disincentive to adopt the BMP 

technology. 

Corollary 2: If BMP information collection is costly (c > 0), producers with 

preferences that exhibit constant absolute risk aversion have an incentive 

(disincentive) to adopt the BMP technology if certainty equivalent returns when using 

the BMP technology with costless information exceed certainty equivalent returns 

when using the status quo technology by at least (less than) the cost c. 

Proof; The assumption of constant absolute risk aversion eliminates any wealth 

effects generated by c because risk aversion is independent of wealth. As a result it can be 

shown that, since the cost c is certain, certainty equivalent returns for using the BMP 

technology with costly information decrease by the same amount c. Then, denoting certainty 

equivalent returns for the BMP technology when c = 0 as CERg^ , if CERg/^ -

CERSQ ^ c, the producer has an incentive to adopt the BMP technology, and if CERG^ -

CERSQ < c, the producer has a disincentive to adopt the BMP technology. 
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In the highly restrictive case of costless information collection, producers have an 

incentive to adopt the BMP technology. However, information is rarely costless to obtain. 

As a result, the policy relevant question is whether or not the gains in certainty equivalent 

returns are sufficient to cover the costs of information collection. Theoretical analysis 

indicates that wealth effects must be taken into account, however, empirically wealth effects 

will probably be small and can be ignored (Hennessy 1998). The actual magnitude of the 

willingness to pay carmot be determined by theoretical analysis without imposing more 

structure in the model, rather empirical analysis specific to each BMP is required. 

Furthermore, the costs represented by c must include all relevant costs to BMP 

adoption and use. However, accounting for all these costs is difficult and specific to 

individual producers. In addition to the obvious labor and capital costs of personally 

collecting information and/or buying an information collection technology, or the cost of 

paying someone to provide the information, c must include less obvious management costs of 

deciding what to do with the information and potential human capital investments to learn 

new information technologies and/or production techniques. These less obvious costs are 

specific to each producer and can exceed the cost of buying the information from a provider, 

as the work of Cooper and Keim (1996) indicates. To account for these difficult to measure 

costs, the empirical analysis of BMPs in this dissertation estimates the willingness to pay for 

the costless BMP {WTPSQ.BMP)- This willingness to pay can then be compared to estimates of 

the cost of BMP adoption and use, and the policy implications discussed. 

2.3.3 Effect of Green Insurance on BMP Adoption Incentives 

The incentives for BMP adoption (if any) provided by actuarially fair green insurance 

can be determined in the same manner as for BMP adoption incentives. The expected utility 
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with green insurance and the BMP technology can be directly compared to the expected 

utility with just the BMP technology. The difference can be monetarized by converting 

expected utility to certainty equivalent returns and calculating the willingness to pay for 

actuarially fair green insurance. This empirical technique indicates how much producers are 

willing to pay for actuarially fair insurance, but requires knowing or assuming a utility 

function to actually implement. More generally, the various stochastic dominance criteria 

can be used to compare and rank the distribution of profit with and without green insurance 

and determine if the insurance increases producer incentives to adopt the BMP technology. 

However, stochastic dominance criteria cannot rank all profit distributions. Proposition 2 

provides a general criterion applicable to all profit distributions that determines if the green 

insurance increases or decreases producer incentives to adopt the BMP technology. 

Proposition 2: Actuarially fair green insurance increases (decreases) producer 

incentives for BMP adoption if the marginal utility ofprofit (u ? and the marginal 

indemnity receivedfor an increase of coverage (10 are positively (negatively) 

correlated for all 0. 

Proof: The producer's optimal value function is obtained by substituting 

the optimal input level x*(9,p) implicitly defined by the first order condition (2.8) into the 

objective function (2.7): 

I I 
EU*{9,P)= \\u{K{x\e,P))dW{s\e)dH{e) (2.12) 

0 0 

where Tc(x*(9,p)) =f(x*(6,P),9,e) - rx*{9,p) - M(P) + l(s,P). If this optimal value function 

monotonically increases in then producers prefer green insurance with any level of 
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coverage (J3>0) to using the BMP without green insurance (^= 0). Assuming that all 

necessary ftmctions are differentiable, this reduces to determining the sign of the partial 

derivative ' however, because 0is stochastic, equation (2.12) and this 

partial derivative must be integrated over 9. The sign of the derivative is found to be the 

same for all realizations of 6, so that integrating over ^does not change its sign. 

Partially differentiate (2.12) with respect to p and rearrange to obtain: 

0 0 

= ̂  J /«' (/, - <-)dW(s I e)dH(£) 
0 0 

+ ]]u\Ip-Mp)dW{s\e)dH{e) 
0 0 

The first order condition (2.8) indicates that the first term is zero. Furthermore, since the 

insurance is actuarially fair: 

M ( / ? ) =  \\l{ s ,p)dW{ s \ e )dH{ E )  
0 0 

I I 

0 0 

This reveals that the term { I p - M p )  is simply I p  minus its expected value £[//?], so that the 

derivative can be expressed as 

II II 
= J ju' IpdW{s I e)dH{e) - £[/^] J ju' dfV(s | s)dff(s) 

0 0 0 0 

which is simply the covariance of u 'and Ip in s and s, so that 
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Furthermore, the derivative maintains the same sign for all realizations of ft since m ' > 0 

and Ip is independent of ft so that the integral over 9is not required. Thus, if m 'and Ip are 

positively correlated, the covariance is positive and producer expected utility increases in ft 

for all realizations of ft and values of p, including y9= 0, which completes the proof. 

Intuitively, the criterion requires that the indemnity schedule be constructed so that 

when profit realizations are lower than expected (implying higher than expected marginal 

utilities), that Ip, the marginal increase of the indemnity for increased coverage, also be 

higher than expected. In other words, when "bad" profit outcomes occur, the insurance 

program is such that returns to increasing insurance coverage are higher as well. However, 

finding reasonable sufficient conditions that imply this in the context of the model here 

proved to be difficult due to offsetting effects. What follows is first a discussion of the 

intuition behind these offsetting effects, then a mathematical analysis that arrives at the same 

conclusion—because the effects are offsetting, empirical analysis is required to determine 

which effect dominates for any specific BMP and green insurance program. 

Since ft is independent of sand s, and fiis fixed exogenously, s and fare the only 

random variables that affect u 'and Ip simultaneously and thus determine their correlation. At 

first, the con*elation of s and e (or equivalently, the conditioning of the density fimction of s 

on e) is ignored, then included in the analysis for easier explanation. 

The effect of an increase of the signal s on the marginal indemnity Ip depends on the 

sign of Ips, which depends on how the green insurance program is designed. It seems 
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reasonable to assume that the indemnity scheme is designed so that //tr > 0. This implies that 

an increase of the realized signal s increases the marginal indemnity for an increase of 

coverage or altematively, an increase in coverage increases the marginal indemnity 

received for an increase of the realized signal. For example, if z(s) is the expected profit lost 

given the observed signal s and ^ e [0,1] is the proportion of this loss paid as an indemnity, 

then I(s,fi) = z(s)fi. Then, if the expected loss increases in the signal s,z'>0 and /^jj > 0. 

Altematively, if the insurance is constructed so that = 0, then Ip depends only on /?and no 

longer covaries with u' so that changing the level of coverage does not affect the producer's 

expected utility and the producer has no incentive to purchase the insurance. 

First assuming that s and e are not correlated, then u 'and Ip only covary in s. If > 

0, then an increase in s implies an increase in I p. Also, an increase in s implies an increase in 

the indemnity, which increases profit and thus m'decreases since utility is concave in profit. 

Thus Ip and w'have a negative covariance in s when s and fare not correlated. 

Accounting for the negative correlation between s and e implies that the increase in s 

is accompanied by a decrease in e. The direct effect of a decrease in fi-is to decrease profit 

and thus increase in u'. Thus including the negative correlation between s and ^reveals 

offsetting effects on uThe tradeoff is that an increase in the signal s implies an increased 

indemnity and an associated decrease in marginal utility, but this increase in s is also 

accompanied by a decrease in e, implying less income from crop production and thus an 

increase in marginal utility. The producer must tradeoff income from the indemnity and 

income from crop production, with the technology and the insurance program imposing 

constraints on the tradeoff. 
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The derivatives of w'and Ip in f and s reveal with formal mathematical analysis the 

offsetting effects that determine the covariance. The four derivatives are: 

 ̂ « (Q 00 CD 

— J = j p'w^{s\s)h{£)ds ds 

j ̂ Ipw{s\e)h^{e)dsde 

-«-a9 
00 ee 

+ 
—00—00 

— J ^^Ip,,w{s\e)h{s)dsd£ 
»g&—OD —^^00 

CO 00 

+ ^ ^IpwXs\s)h{£)ds ds 

A 00 00 00 CO 
— j ̂ u'w{s\£)h{£)ds d£= f^\v{s\£)h{e)ds de 
ds -oo—oo -co-cc 

00 9 

M OO OQ 00 03 

— j ju' vf(jr I €)h{£) ds d£ = Jl"' ' I^\v{s\£)h{£)ds dE 
—o^oo —o^flo 

00 « 

- I J " '  v f ^ ( j  I  £ ) h { £ )  d s  d £  

(2.14a) 

(2.14b) 

•>r ^ ^u'w^{s\£)h{£)ds d£ (2.14c) 
>>00-00 
00 00 

+ ̂ ^u'^Ai^s\£)h^{£)dsd£ 

(2.14d) 

Further assumptions concerning the distributions of s and f-are helpful before 

attempting to determine the signs of (2.14a-d). Assume that s has a unimodal distribution 

and that an increase in £ shifts the distribution to the left such that the original distribution 

with the smaller fhas a lower mean, but all other moments remain unchanged. This 

assumption is consistent with negative correlation between s and £, and implies that is 

positive for low values of s, crosses the axis once, and is negative for high values of s. Also 
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5 * 0 
note the following result: J ^^(51 £)ds = — [wCj j £)ds = —1 = 0, which also holds for the 

_i 5£r _i d£ 

integrals of h/s) and | e) over £. Lastly, assume that s is distributed unimodally so that 

He is positive for low values of e, crosses the axis once, then is negative for high values of e. 

Even these assumptions do not allow a priori determination of the sign of (2.13), 

though the signs of some of (2.14a-d) can be determined. For example, since //? is positive 

and increasing in s, the first term of (2.14a) is negative and, since Ip is independent of £, the 

second term is zero, so that (2.14a) is negative. However, the sign of (2.14c) is ambiguous. 

Since^> 0 and w "< 0, the first term is negative, but since u 'is positive and decreasing in s 

and £, the second term is positive, and the sign of the third term is ambiguous. As a result, 

how Ip and u 'are correlated in fis theoretically ambiguous and the must be determined 

empirically. Similar results occur for (2.14b) and (2.14d) so that again the correlation in 5 is 

ambiguous and requires empirical analysis. 

Because of offsetting theoretical effects, the sign of the covariance between u'and Ip 

caimot be determined a priori with standard assumptions. The issue reduces to producer 

preferences and the trade off between income from crop production and insurance 

indemnities imposed by the technology and insurance program. As a result, empirical 

analysis of each specific green insurance program for each BMP is required to determine 

whether the insurance increases producer incentives to adopt the BMP. Such analysis 

determines if a proposed green insurance product is worth developing further, or what 

research needs to be done to make it worth developing. An empirical analysis of this sort is 

the subject of chapter 5. 
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2.3.4 Green Payments versus Green Insurance for Incentive Provision 

This section addresses the policy relevant question of how a green payment program 

compares to a green insurance program in terms of incentive provision for BMP adoption. 

Conditions to ensure that green insurance is superior to green payments are summarized in a 

proposition, but determining if these conditions are satisfied for a particular program requires 

empirical analysis. 

The actuarially fair green insurance program assumed thus far is not realistic, since 

administrative and adjustment costs have not been included, nor has the requirement that the 

insurance generate normal profits for the provider (assimiing a competitive insurance 

industry). Insurance providers cover these additional costs and obtain normal retimis by 

adding a "load" to the actuarially fair premium. In the model here, this load is a fixed value 

of d, so that the actuarially feasible premixmi is M(P) + d, while the actuarially fair premium 

is 

A green payment program pays producers a direct subsidy for adoption of a specific 

BMP. In practice, these green payments are typically cost share subsidies that pay pre-

specified proportions of the estimated cost of implementing the BMP. In the model here, this 

payment is a fixed amount g. 

Before developing the next proposition, additional notation requires definition. Use 

(2.7) to define the expected utility for producers using the BMP technology who have 

purchased actuarially feasible green insurance as 

= jjui;r)dWis\s)dH(€) )dG{9) (2.15) 
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where 7t=f(x, 9,e) -rx - c- M(p) - + I(s,p). Denote certainty equivalent returns for this 

producer as CERGI = U''(EUGI). Lastly, denote the willingness to pay for actuarially feasible 

green insurance for producers already using the BMP technology as WTPBMP.CI = CERGI -

CERBMP-

Given these definitions, conditions when green insurance is superior to green 

payments for providing incentives to adopt a BMP are summarized in Proposition 3 

Proposition 3: If producers adopting the BMP technology have a positive willingness 

to pay for actuarially feasible green insurance—WTPBMP.GI > 0, this WTPBMP.CI IS an 

additional incentive for BMP adoption provided by green insurance and to provide 

an equivalent incentive with a green payment subsidy requires positive government 

expenditure. 

Proof: By definition, WTPBMP.GI = CERQI - CERBMP is the difference between 

certainty equivalent returns for the producer using the BMP technology with and without 

insurance, and as such is a monetary measure of the increase in producer incentives to adopt 

the BMP. If WTPBMP.GI > 0, green insurance provides an additional incentive and if 

WTPBMP.CI < 0, it provides a disincentive. 

Because the insurance is actuarially feasible, it can be privately provided and does not 

require any form of governmental support in the form of premium subsidies. It is possible to 

provide an equivalent adoption incentive with a green payment, but this requires some 

positive government expenditure. Use (2.4) to define the expected utility for producers using 

the BMP technology and receiving a per acre green payment of g as 

^U(;pig)== UM^ ju{;r)dHis)  WG(0) (2.16) 
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where K ~f(x, 6,e) -rx- c g. Denote certainty equivalent returns for this producer as 

CERcpCg) = u' (EUcp(g)). Note that if the green payment is zero, the producer has exactly 

the same optimization problem as when using the BMP without green insurance or a green 

payment, so that EUcp(O) = EUBMP and CERap(0) = CERBMP- If WTPBMP.CI > 0, then CERGI 

> CERBMP, and thus for a green payment to achieve the same willingness to pay as green 

insurance requires changing g to increase CERcp until it equals CERGI- Because g enters the 

profit specification additively and is certain income, an increase in g increases mean profit, 

but leaves the other moments unchanged. As a result, the new profit distribution first order 

stochastically dominates the original profit distribution and producers with a positive 

marginal utility of income (m'> 0) obtain greater expected utility with the new profit 

distribution (see Hirshleifer and Riley's (1992) Ranking Theorem I). Therefore, ifg> 0, 

CERGP(G) > CERGP(O) and there exists some G > 0, such that CERGP(G) = CERGI- AS a 

result, to provide an equivalent BMP adoption incentive with a green payment requires a 

positive subsidy of g > 0. This completes the proof 

Just as in Proposition 1 with the cost c. a subsidy g that is certain changes producer 

wealth, which can change producer risk aversion, which then affects certainty equivalent 

returns. Indeed, receiving a subsidy g can change certainty equivalent returns to such an 

extent that a producer who previously had a WTPBMP.GI > 0, can, after receiving a subsidy, 

have a WTPBMP.GI < 0 and vice versa. For example, if producer preferences exhibit 

decreasing absolute risk aversion (DARA), receiving a premium subsidy increases wealth 

and reduces risk aversion. If this wealth effect on risk aversion is sufficient, a producer who 

previously had a positive willingness to pay for actuarially feasible green insurance may now 
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have a negative willingness to pay. As a result, the subsidy would provide more incentive for 

BMP adoption if it were given as a cost-share subsidy and did not require the purchase of 

green insurance. The opposite result is possible with preferences that exhibit increasing 

absolute risk aversion. 

Potential wealth effects caused by receipt of a subsidy preclude simple conclusions 

concerning the relative effectiveness of subsidies spent as either premium or cost-share 

subsidies. These wealth effects are theoretical realities, but likely are empirically 

insignificant for realistic cost-share and/or premium subsidies in agricultiu-al production 

(Hermessy 1998). However, if preferences exhibit constant absolute risk aversion (CARA), 

risk aversion is independent of wealth and all wealth effects from subsidies are zero. This 

leads to Corollary 3: 

Corollary 3: If producers adopting the BMP technology have a positive willingness 

to pay for actuarially feasible green insurance—WTPBMP.CI > 0—and preferences 

exhibit constant absolute risk aversion, a premium subsidy for the purchase of green 

insurance provides more incentive for BMP adoption than an equal cost share 

subsidy. 

Proof: Since preferences exhibit CARA, receiving a certain subsidy g does not 

change WTPBSIP.GI and certainty equivalent returns increase exactly g. Thus, certainty 

equivalent returns for a producer adopting the BMP and receiving a green payment g are: 

CERSQ + WTPSQ.BMP + g (2.17) 

while certainty equivalent returns for a producer purchasing green insurance as part of BMP 

adoption and receiving a premium subsidy g are: 

CERSQ + ^^PSQ.BMP WTPBMP.CI g (2.18) 
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The net incentive for BMP adoption provided by the green payment is g, while for the 

premium subsidy, the net incentive provided is WTPBMP.GI + G, since the premium subsidy 

requires the purchase of green insurance. If WTPBMP.GI> 0, then WTPBMP.GI + 5 which 

competes the proof 

Clearly if the willingness to pay for actuarially feasible green insurance is 

positive—WTPBMP.GI> 0, then green insurance provides an incentive to adopt the BMP, and 

does so at no cost to the government, unlike a green payment subsidy. In addition, if the 

wealth effects generated by a subsidy are insignificant or zero, which empirically is likely to 

be the case, then government expenditures on premium subsidies for actuarially feasible 

green insurance provide more incentive for BMP adoption than expenditures on green 

payment cost-share subsidies. The sign of WTPBMP.GI determines if green insurance is 

superior to green payments at providing incentives for BMP adoption. However, it is not 

possible to a priori sign this term, rather it is an empirical issue for each specific insurance 

product for each BMP. An empirical analysis of this sort is the subject of chapter 5. 

2.3.5 Conclusion 

This section analyzed BMP adoption incentives provided by green payments and 

green insurance, as well as by the BMP itself, and compared the cost efficiency of the two 

instruments. Proposition 1 demonstrated that in order for producers to have an incentive to 

adopt the BMP, the BMP must generate a sufficient increase in certainty equivalent returns to 

cover the cost of adoption and use. The increase in certainty equivalent returns may or may 

not be larger in monetary value than the cost of adoption and use, depending on preferences. 

Proposition 2 proved that green insurance further increases the value of the BMP if the 

insurance policy is structured so that marginal utility and the marginal increase in the 
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indemnity from increased coverage are positively correlated. Lastly, as demonstrated in 

Proposition 3, green insurance is superior to green payments if the insurance generates a 

sufficient increase in certainty equivalent returns to cover the load added to the premium to 

make the insurance actuarially feasible and wealth effects are insignificant. However, to 

determine if these criteria are satisfied for the three propositions requires empirical analysis 

specific to the insurance product and the status quo and BMP production technologies. 

2.4 Theoretical Analysis of Policy Instrument Impacts on Optimal Input Use 

2.4.1 Introduction 

These next sub-sections attempt to analytically determine the effect of BMP adoption 

and the various policy instruments on optimal input use. The change in optimal input use 

when switching from the status quo to the BMP technology is the adoption effect and 

intuitively should be negative (i.e. optimal input use decreases). Lump sum green payment 

subsidies generate a wealth effect that can change optimal use. Receiving green insurance 

coverage changes the risks a producers face, and as a result creates a risk effect that changes 

optimal input use. Lastly, if the level of input use affects the distribution of the insurance 

signal, the resulting moral hazard effect can change optimal input use. Originally the hope 

was to determine simple and intuitive sufficient conditions that ensured desired signs for 

each of these effects. However, a general conclusion of this section is that analytical results 

are difficult to obtain, so that empirical analysis of each specific BMP and green insurance 

program is required. 

2.4.2 Impact of BMP Adoption on Optimal Input Use 

The primary benefit of BMP adoption is that producers can increase their certainty 

equivalent returns by utilizing polluting inputs more efficiently, so that less pollution is 
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generated. However, BMP adoption does not necessarily result in reduced optimal input use. 

For example, IPM can result in an increase in insecticide use, since producers become more 

aware of insect pests and are encouraged to control infestations that would otherwise remain 

unknown or be ignored. In addition, even if BMP adoption does reduce optimal input use, 

regulators want to know the magnitude of this reduction in order to estimate the reduction in 

pollution generation. Such information allows evaluation of the efficacy of subsidy 

expenditures and/or judging whether pollution reduction goals are satisfied. 

In the context of the model here, the effect of BMP adoption on optimal input use 

reduces to determining the sign and magnitude of the difference between the expected value 

ofxY^ and x*: 

I 

jx*{e )ciG{e )-x* (2.19) 

The expected value of x*(0) is required, since producers choose x conditional or the 

observed 0, but ^is stochastic. Originally it was hoped an expression for (2.19) could be 

derived using second order approximations in a manner analogous to Hennessy and Babcock 

(1998), so that factors determining its sign could be identified. However, it quickly became 

apparent that the presence of the utility flmction and the uncertainty due to e made such an 

analysis intractable. 

To illustrate, the technique of Hermessy and Babcock requires a second order 

approximation of x*(d) around 0, the expected value of ft 

^ ,cfe*(g)  {O-ef  d^x*{e)  

de ^ 1 dG" 
x*(^)«x*(g)  + (g-g)^;  \  (2.20) 

Applying the implicit fimction theorem to the first order condition (2.5) yields 
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(2,21) 
dO 

The expression for the second order term is even more complex. Hennessy and Babcock 

assumed profit maximization as opposed to expected utility maximization, and that the new 

technology eliminated all uncertainty concerning the availability of inputs. As a result, their 

analogous expression for (2.21) is simply . Even so, their expression for 
fXX 

(2.19)—Hennessy and Babcock equation (9), obtained by substituting in expressions for the 

first and second derivatives, is rather complex. For the reader's convenience, it is reported 

here after converting to the notation as used here; 

fxifxee fxefxx 

2/i 
^fxef  1X0 fXX fxee •*" (2.22) 

The uncertainty due to £ does not create a significant problem, particularly if s and 0 

are not correlated—the partial derivatives of the production flmction are replaced with the 

expected value in s of the same partial derivatives. However, the presence of the utility 

function quickly makes expressions complex and the method of Hennessy and Babcock 

intractable in this context. The main point is that the sign and magnitude of (2.19) are 

essentially impossible to determine analytically, so that an empirical analysis of each specific 

BMP is required. Such an analysis is the subject of chapter 5. 

2.4.3 Impact of Green Payments on Optimal Input Use 

Providing producers with green payments creates a wealth effect that provides 

incentives for some types of risk averse producers to increase their optimal input use. This 
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effect has been noted in other studies (e.g. MacMinn and Holtman 1983, Hennessy 1998), 

and in this case has important policy implications. Proposition 4 summarizes the effect of 

green payment subsidies on optimal input use for producers using the BMP technology. 

Proposition 4: Decreasing (constant) absolute risk aversion, fxc <0,fc> 0, Jx > 0, 

and ̂  < 0 '^6 are sufficient conditions for a green payment subsidy to decrease (not 

change) optimal input use. 

Proof: The producer's optimization program and associated first and second order 

conditions are as stated in (2.4)-(2.6), except that 7V =f(x,6,e) - rr - c + g, where g is the 

exogenous and certain green payment received. The first order condition implicitly defines 

the optimum x*(9,g) and again7^ < 0 is sufficient to satisfy the second order condition. 

Applying the implicit function theorem to the first order condition yields: 

The denominator is the second order condition and thus is negative, so that the sign of the 

numerator determines the sign of the derivative. To show that the numerator is negative, fix 

TV I as profit when f^{x*{0,g) ,6,e)-r<O. Denote the Arrow-Pratt coefficient of absolute 

risk aversion as Ra(j^)- Since fx>0 and fxx<0, Ki> tto, and since preferences exhibit DARA, 

RA(^I) <RA(I^O) which implies: 

(2.23) 

0 

0 at some permissible value 0 , then denote TTO as profit when f^(^x*{0,g) ,0,£)-r  = O and 

(2.24) 
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Next, note that whenfx-r<Q, 

-u\ f , -r)>Q (2.25) 

Next multiply (2.24) by the left-hand side of (2.25) and rean-ange to obtain 

Th® inequality holds for all e, since if the realized 

value of e is such that fx-r>Q, then the inequalities in (2.24) and (2.25) change direction, 

leaving the result unchanged. Next integrate both sides over sto obtain 

I I 
J"'' (^,)(/. - r)dHis)  < ) Jm-(;r,)(/, - r)dH{e) = 0 (2.26) 
0 0 

and note that the right-hand integral is the first order condition and equals zero. Lastly, note 

that (2.26) holds for all realizations of ^if «'> 0, m"< 0,fx > 0, and< 0 for all 9, which 

completes the proof for DARA. 

For CARA, note that RA(^) is a constant RA, then re-express the numerator of (2.23) 

1 I 
as Ji'" CA - r)dH{s)  = -R^ jw '(/x -  r)dH{s) and note that the right-hand integral is the first 

0 0 

order condition and must equal zero at the optimum. Lastly, note that the equation holds for 

all realizations of ^if w'> 0. m"< 0,fx > 0, and< 0 for all G, which completes the proof 

for CARA. 

This proof extends Sandmo's (1971) method to the case of known variability in 9, 

which does not change the essential result—that the wealth effect of a lump sum subsidy 

reduces optimal input use if preferences exhibit DARA and x and e are substitutes (MacMirm 

and Holtmann 1983). Intuitively DARA seems a more realistic assumption and it has 

empirical support from analysis of agricultural producers' decisions (Chavas and Holt 1996, 
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Saha et al. 1994). The policy implication is that producers who receive a green payment that 

is in excess of that required to get them to adopt have an incentive to further reduce their 

input use. Thus offering high green payments not only gets more producers to adopt the 

specific BMP, but also encourages those who do adopt to use even less of the polluting input. 

Thus the effect of BMP adoption and the wealth effect of the green payment work together to 

reduce overall input use, as long as producer preferences exhibit DARA. However, the 

actual size of this wealth effect for a particular BMP requires empirical analysis to determine 

if it is policy relevant. The work of Hennessy (1998) indicates that empirically, wealth 

effects will likely be minor for Midwestern crop production. 

2.4.4 Impact of Green Insurance on Optimal Input Use 

Producers change their optimal input use to respond to the change in profit 

uncertainty that results from insurance coverage. Insurance reduces the risk that producers 

face, so that they have an incentive to reduce their expenditures on risk reducing activities 

and to engage in riskier activities. Inputs can be a form of self-insurance (risk reducing) or a 

type of risky activity (risk increasing) depending on the specifics of the production process 

and the input. For risk increasing inputs, optimal input use increases with insurance coverage 

and, for risk reducing inputs, optimal input use decreases with insurance coverage. This risk 

effect of green insurance can offset any decrease in optimal input use resulting from BMP 

adoption, or work with the BMP adoption effect to further decrease optimal input use. If an 

input is sufficiently risk increasing, green insurance may even be counter-productive to the 

goal of reducing overall input use. However, several studies indicate that this is unlikely for 

typical crop production inputs (Ramaswami 1993, Quiggin et al. 1993, Babcock and 

Hennessy 1996, Smith and Goodwin 1996). 



www.manaraa.com

53 

The sign of dx*{e,P)/  
/dp determmes the sign of the risk effect and indicates whether 

insurance coverage increases or decreases optimal input use. If the derivative is positive. 

then insurance increases optimal input use because x is a risk increasing input. Conversely, if 

the derivative is negative, then insurance reduces optimal input use because x is a risk 

reducing input. If the sign is the same for all p, then insurance has the same effect regardless 

of the coverage, even foxx*(6,0) = x*(6), the optimum for the producer using the BMP 

without insurance. However, if the sign changes, this has implications for the level of 

coverage that regulators prefer to achieve their goals. Proposition 5 summarizes the 

conditions that determine whether an input is risk reducing or risk increasing. 

Proposition 5: The input x is risk reducing (increasing), and thus actuarially fair 

green insurance reduces (increases) optimal input use, if u "(fx - r) and (Ip - are 

negatively (positively) correlated for all 9. 

Proof: Apply the implicit function theorem to the first order condition (2,8): 

0 0 

The denominator is the second order condition (2.9) and is negative, so that the sign of the 

numerator determines the sign of the derivative. However, the numerator can also be 

negative, then (2.27) is negative, and green insurance coverage reduces optimal input use 

since x is a risk reducing input. Conversely, if the covariance is positive, then (2.27) is 

positive and green insurance coverage increases optimal input use since x is a risk increasing 

I I 
4'I - }itr(,s I s)dH(£)  

J -rf +u'/^}ins\e)dH(s) 

(2.27) 

expressed as the covariance of u"{f^-  r) and (Ip - Mp) in ^ and e. If the covariance is 
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input. Lastly, note that because 0is stochastic, (2.27) must be integrated over d. However, if 

the covariance does not change sign for all realizations of 0, then this integral is not needed 

and the proof is complete. 

Providing intuition for this proposition is difficult and requires additional 

assumptions. As with Proposition 2, offsetting effects are present as well, so that reasonable 

sufficient conditions that determine the sign of the covariance are difficult to find. Following 

the method used for Proposition 2, what follows is first a discussion of the intuition for 

Proposition 5, then a more formal mathematical analysis. Both reach the same 

conclusion—because of offsetting effects, empirical analysis is required to determine which 

effect dominates for any specific BMP and green insurance program. 

Again ^ and fare the only stochastic variables that affect w" (/, - r) and (Ip -

simultaneously and thus determine their covariance. For simplicity, first the correlation 

between s and s is ignored, then later reintroduced. Given this, s is the only stochastic 

variable of concern, since (Ip - Mp} is no longer affected by e through s. Before proceeding, 

fiirther structure concerning preferences is required, since the effect of j on w" - r) 

(«")" 
depends on If preference exhibit DARA, this implies that while if 

u' 

preferences exhibit CARA, the inequality becomes an equality. Both cases imply that u "'is 

positive. 

Given these assumptions, an increase in s implies an increase in the indemnity and 

thus in profit, which implies that w"increases, since u"'> 0. In addition, (/,-/•) is 

independent of s and does not change, so that u"(f^-r) increases as s increases. Again, if 
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/^ > 0, an increase in s implies that (1^ increases as well. These results derived from 

these assumptions imply that r) and (Ip - are positively correlated and thus 

insurance coverage increases optimal use of the input x. This positive risk effect occurs 

because s and s are not correlated. As a result, the insurance is in essence an exogenous 

gamble imposed on the producer that hzis nothing to do with the profit earned from crop 

production, and an increase of /? changes the gamble so that the producer faces less income 

risk. The producer is then willing to take on more risk in crop production by increasing 

output, which requires an increase in input use. 

Accounting for the correlation between s and ^ reveals the potential for offsetting 

effects, so that it is in general no longer possible to determine the sign of the covariance 

between the two terms. However, if = 0, then no risk effect exists, since s no longer 

affects (Ip - Thus, even if changes in £ affect 5 through the conditional density function 

for s. though the resulting changes in 5 do affect the indemnity, they do not affect (Ip - M^. 

When the correlation between s and s is included, the previously discussed increase in 

J, and the associated increases in both w"(/, -r) and (Ip -Mp^, is accompanied by a 

decrease in s. If u '"> 0, as is the case if preferences exhibit DARA or CARA, a decrease in 

s decreases output and profit and so u"decreases. But if x and e are substitutes {fxe < 0), the 

decrease in s also increases the marginal product of x, and that the combined effect is that 

w" (/, - r) decreases. Whether this effect dominates the effect of ^ on w" (/, - r) depends 

on the specifics of the production process, producer preferences, and the structure of the 

insurance program. The intuitive tradeoff is that an increase in the signal s implies an 

increased indenmity and an associated increase in the concavity of utility, but this increase in 
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s is also accompanied by a decrease in e, implying less income from crop production and 

thus an decrease in the concavity of utility. In addition, the decrease in e increases the 

marginal product of x, which further complicates the analysis. Again, the producer must 

tradeoff income from the indemnity and income from crop production, with the technology 

and insurance program dictating the constraints. As a result, empirical analysis is required 

for each specific green insurance program to determine if the risk effect generated by the 

insurance is positive or negative. 

A formal analysis of the partial derivatives reveals the offsetting effects and the 

difficulty in deriving conditions that determine the sign of the risk effect. The four 

derivatives are: 

A ao 00 CO 00 

-  Mp )w(^ I £)h{£) ds de = -  Mp )m'^ (51 s)h{£) ds de 
—0^—00 —0^—00 

00 00 

- Mp IwC JI £)h^{E) ds de 
-co-00 

M 00 00 oO 00 

-  Mp)w{s I e )h{e)  ds de = J ^,Ms\e)h{e)  ds de 
—qO— oD —fl^"flO 

00 CO 

-  Mp )w,{s I e)h{e)  ds de 

(2.28a) 

(2.28b) 

A 00 OQ W 00 
— J \u"i f^-r)w{s\e)h{e)dsde= J f^{f^-r)  + u" f^^w{s\e)h{e)dsde 

—0^—00 —® 
00 00 

+ J J"" (/x - I £)h{£) ds de (2.28c) 
-co—gQ 

eo OO 

+ f \u ' \ f^-r)wis\e)h^{e)dsde 
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^ J \u"{f , -r )wis\s)h{s)dsds= J Ir)w{s\e)h (E)dsde 

^ ( 2 . 2 8 d )  

' (/x - '•)m',(5 I e)h{e) ds de 

In a manner similar to that used for (2.14a-d), some standard assumptions concerning 

the distributions of s and £ could allow determination of the signs of some of the terms in 

equations (2.28a-d). However, the signs of all terms camiot be determined with such 

assumptions, or their combined sum is ambiguous. Because of these ambiguities, the sign of 

the covariance cannot be determined a priori with standard assumptions, but depends on the 

specifics of the green insurance program, the BMP technology, and producer preferences. As 

a result, empirical analysis of each specific green instorance program for each BMP is 

required to determine the sign and the magnitude of the risk effect on optimal input use. 

Such analysis indicates whether the resulting increase or decrease in optimal input use is 

sufficiently large to be policy relevant. 

2.4.5 Green Insurance to Reduce Optimal Input Use 

Previous sub-sections discussed the need for empirical analysis to determine the size 

of the adoption, wealth and risk effects. If the green payment wealth effect and the green 

insurance risk effect are insignificant, they may be ignored, but if they are large, either or 

both may have policy implications that may make one instrument superior to the other. 

However, there are limits to both instruments. If the adoption effect is not sufficiently large, 

both of these instruments may require substantial expenditures to generate the necessary 

additional adoption to achieve the pollution goals of regulators (Cooper and Keim 1996). 

Large subsidies may then make the wealth effect an important addition to the adoption effect. 

However, such subsidies can quickly become too costly to be politically feasible. Green 
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insurance can be an improvement over green payments in terms of incentive provision, and 

thus achieve higher adoption for a given expenditure. However, it only provides a one time 

discrete amount of extra incentive—WTPBMP.GI- If any additional incentives are required, it 

is no different than a green payment. In addition, a positive risk effect can offset or dominate 

any input reduction incentive provided by the wealth effect. Even if the risk effect is 

negative, it may not be sufficient to achieve ±e pollution reduction goals of regulators. 

This section explores in a theoretical context another method of using green insurance 

to reduce optimal input use and pollution in a more cost effective manner. In section 2.2.2.4 

it was assumed that the applied input x did not affect the distribution of the signal s, thus 

eliminating any consideration of a moral hazard effect. Most insurance requires elimination 

or sufficient reduction of this effect, or the insurance is not actuarially feasible. However, it 

may be desirable to use a signal that is not immune to this moral hazard effect as a means for 

regulators to achieve desired levels of pollution that cannot be achieved cost effectively with 

green payments or the standard green insurance program. If the moral hazard effect required 

to achieve regulation goals is too severe, the insurance will not be privately provided, unless 

it is publicly subsidized in a maimer similar to current crop and revenue insurance programs. 

What makes these subsidies potentially more cost effective than cost share green payments or 

green insurance premium subsidies is that they can achieve a lower level of pollution for the 

same expenditure by exploiting the moral hazard effect. What factors make a moral hazard 

effect of the desired type possible are discussed in the rest of this section. 

Assimie that the level of x directly affects the distribution of the signal s, so that the 

relationship between s and x is not deterministic. Unlike the relationship between s and s 

derived previously, because x is chosen optimally, the conditional distribution of j cannot be 
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derived from the underlying multivariate distribution of s, e, and x. Rather the stochastic 

relationship between s and x can be expressed ftmctionally ass = K(X, e, Q, where ^is another 

random variable independent of e and Vc < 0 to maintain the negative correlation between s 

and To ensure that a moral hazard effect exists, KX ^ 0, but no other assumptions 

concerning vare made. The function vcan be as simple as j = -£•+x + ^, where <^\s white 

noise from the technology used to measure f and x affects only the mean of s. Other 

specifications for /rare possible in which x affects the mean negatively or nonlinearly, or 

affects the variance and higher moments of s. Given the function at and the required 

regularity conditions, the transformation of variable technique or other such methods can be 

used to obtain vvfislx, s), the density function of s conditional on e and the amount of x applied. 

This conditional distribution captures all the effects of both sand x on s. 

Using this new specification for the density function for s, the producer's 

optimization program must be re-derived. The producer who has purchased green insurance 

for which there is a moral hazard knows the values of 0and /3and must choose a decision 

rule x**(9,p) that is ex ante optimal over all realizations of j and e. The expected utility 

maximizing producer determines this rule by solving the following optimization problem, 

treating 6 and p as exogenous parameters: 

00 00 

Max ^ ^u{Tr)w{s\x,e)hi£)ds de (2.29) 
-o^-flO 

where n = f(x, 9,s) -rx-c- M(/3) + I(s,P). The first order necessary condition is: 

QO A o oo 

J ^u\f: ,—r)w{s\x,£)h{s)dsd£-i-  J ^uw^{s\x,e)h{£)dsde = Q (2.30) 
—oo~oc —<o 
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which implicitly defines the optimal decision rule denoted x**(9, ft). The second order 

condition can be expressed as: 

j J("'' 1/x - '"f + /« I ds de 
— 

00 CO 

+ 2 I ̂ u' \ f^-r]w^{s\x,e)h{e)dsde (2.31) 
— 0^00 
00 CO 

+ ^ ^u'w^{s\x,e)h{£) dsde 

for which the previous conditions of m '> 0, w " < 0, and< 0 are only sufficient to ensure 

that the first term is negative. For this model, (2.31) must be negative by assumption. 

The first order condition (2.30) allows derivation of sufficient conditions that ensure 

the moral hazard effect reduces optimal input use. 

CO OQ 

Proposition 6:  ̂  j  juw^(s I x ,s)h(s)  ds ds is  negative (posi t ive) ,  the moral  hazard 
-co-00 

effect decreases (increases) optimal input use for producers using the BMP 

technology with green insurance coverage. 

Proof: If the producer ignores the effect of x on the distribution of j, the first order 

condition for this optimization problem is 

00 00 

J ^u\f^-r)w{s\x,s)h(^e)ds ds = 0 (2.32) 
-oO—00 

which implicitly defines the optimal decision rule x{0,l3). Denote the implicit fimction 

defined by (2.32) as  F{x,9,P) ,  which by defini t ion is  zero when evaluated at  jc =  x(j9, f i ) .  

Use F(x, 9,P) to denote the implicit function defined by (2.30) the first order condition for the 

producer taking the moral  hazard effect  into account .  Subst i tute the decision rule x{9,P) 
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into F(x, d,P). Since F{x,6,P) is the first term of F(x,9,fi), when F(x, 9,P) \s evaluated at 

eo 00 

x{9,P) , the first term is zero. If | 1 x,e)h{E) ds ds (the second term) is negative for 
••>0^00 

all X, then F(x{9,P),9,P) must be negative and if it is positive for all x, then F(x{6,P),9,P) 

must be positive. Assuming that the second order condition (2.31) is negative, then x**(9,p) 

< x{9,P) yjh£\iF(x{9,P),9,P) is negative and > x(9,P) when F(x(9,P),9,P) is 

positive. This completes the proof and Figure 2.1 graphically presents the inmition. 

Imposing more structure on the effect of .r on the distribution of s yields a corollary to 

Proposition 6: 

Corollary 4: If the distribution of the signal s is unimodal and increasing the input x 

shifts the distribution such that the original distribution with the lower (higher) x has 

a higher (lower) mean and all other moments remain unchanged, the moral hazard 

effect decreases (increases) optimal input use for producers using the BMP 

technology with green insurance coverage. 

Proof: The assumptions concerning the distribution of s and the impact of increasing 

x on the distribution imply that w, is positive for low values of s, crosses the axis once, and is 

negative for high values of 5. Next note that [^^(j | x,£)ds =— fw(j | x,£)ds = —1 = 0 and 
-i dx 
—CO —CO 

M is a positive and increasing function of s. Together these imply that 

ao X 

J Jmvi'J(j I x,£)h{s)  ds ds is negative for all x. Given this result, the conclusion follows as 
-00—00 

shown in Proposition 6. 
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F 

F(x,0,P) 

F{x,e,p)  

X 

Figure 2.1. Stylized plot for Proposition 6 illustrating that '\iF(x, d,P) is negative when 
evaluated at  x{6,P) ,  then x** < x(0, f i )  

It is theoretically possible to develop a green insurance program that exploits the 

moral hazard effect to obtain further reductions in optimal input use and thus pollution. All 

that is required is to find an insurance signal that has a distribution with the right properties, 

as specified in Proposition 6 and Corollary 4. This improved green insurance can attain 

reductions in optimal input use that the original green insurance program can only attain by 

increasing premium subsides to increase adoption, taking into account possibly significant 

wealth and risk effects. However, the magnitude of the moral hazard effect may not be 

sufficient to be policy relevant, or the effect may be so severe that private insurance 

provision is impossible without subsidies. These are empirical issues that must be addressed 

for each specific insurance product and production process. Later chapters present the 
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empirical analysis of specific green insurance programs, unfortunately no analysis of green 

insurance products with moral hazard effects are analyzed empirically. 

To create a moral hazard effect for an existing green insurance product does not 

necessitate finding a new signal to replace the existing insurance signal. Instead, combining 

the existing signal and the amount of input used can generate a new signal with the desired 

moral hazard effect. For example, a new signal ? could be obtained by 5=5+ y(x), where 

< 0 is required for the moral hazard effect to reduce optimal input use. The impact and 

usefulness of such a transformed signal again require empirical analysis. 

2.4.6 Conclusion 

This section analyzed the impact of technology adoption and the various policy 

instruments on optimal input use. Determining the sign and magnitude of the adoption effect 

was analytically intractable and thus became an empirical issue. Proposition 4 demonstrated 

that the wealth effect of green payment subsidies reduced optimal input use only for 

producers whose preferences exhibit DARA. Factors determining the sign of the risk effect 

caused by insurance coverage were suirunarized in Proposition 5. Lastly, the possibility of 

using a moral hazard effect to reduce optimal input use was explored and factors that 

determine the sign of the effect were summarized in Proposition 6 and Corollary 4. 
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CHAPTER 3: STOCHASTIC DYNAMIC CORN ROOTWORM POPULATION 
MODEL 

3.1 Introduction 

This chapter presents the two main components of the stochastic com rootworm 

population model. First the stochastic weather generator is described, then the population 

model built from it is presented. Together these form the stochastic com rootworm 

population model used for the economic analysis. The model was written in C-H- SO that 

multiple simulations could be conducted under a wide variety of conditions in order to 

understand the uncertainty associated with com rootworm infestations. 

3.2 Stochastic Weather Generation 

3.2.1 Introduction 

Insect population models typically assume that ambient air or soil temperatures 

largely determine the rate of organism development and the time needed for advancement to 

subsequent life stages. This generalization applies to models of all life stages, whether 

stochastic or deterministic (e.g. Mooney and Turpin 1976, Schaafsma et al. 1991, Fisher 

1986, Jackson and Elliot 1988, Hein and Tollefson 1987). Thus any insect population model 

has an explicit or implicit assimiption of temperature dynamics upon which it is built. A 

stochastic model of temperature dynamics is desirable to capture the full range of population 

dynamics possible due to weather variability. If only a few years of data are used, weather 

variability is not be sufficient to capture the full range. After searching the meteorological 

literature, the method described by Richardson (1981) was chosen to generate a stochastic 

time series of daily maximum and minimum temperatures. However, to generate daily 
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temperatures also required generation of daily precipitation, since daily temperatures are 

highly dependent on daily precipitation. 

The rest of this section provides a detailed description of how time series for daily 

precipitation and maximum and minimum air and soil temperatures are generated for use by 

the com rootworm population model. In brief, the precipitation status of each day is a first-

order Markov chain with two stages—^wet or dry. Daily maximum and mirumum air 

temperatures both follow a lag one autccorrelated time series, with lag zero and lag one cross 

correlation with the other temperature and with a mean and variance conditional on each 

day's precipitation stanis. Fourier series are used to describe the seasonal periodicity of the 

transition probabilities of the Markov chain, as well as the conditional means and standard 

deviations of maximum and minimum air temperature. Soil temperatures depend on air 

temperatures, but follow a lagged process due to soil heat storage and other factors. Lastly, 

the algorithm used to calculate degree days is presented. 

3.2.2 Data Source for Estimating Precipitation and Air Temperature Parameters 

Earthlnfo sells the National Climatic Data Center's (NCDC) Validated Historical 

Daily Data on CD-ROM for hundreds of weather stations through out the United States 

(Earthlnfo 1996). Using the accompanying software package, all observations for the daily 

maximum and minimum air temperature and total precipitation for weather stations in 

Brookings, South Dakota and Boone, Iowa were exported. For Brookings this included data 

from January 1, 1893 to December 31, 1994 (102 years or 37,230 days), with 441 days 

missing (<1.2%). For Boone the data included May 1, 1948 to December 31, 1994 (47 years 

or 16,837 days), with 228 days missing (< 1.35%). These data were used to estimate all 

parameters for stochastic temperature and precipitation generation. Unless otherwise 
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specified, all estimation was done using the econometrics software Time Series Processor 

(TSP), version 4.3 (TSP International 1995). 

3.2.3 Precipitation Model and Parameter Estimates 

3.2.3.1 Markov Chain Model of Daily Precipitation Status 

Following Richardson (1981), a first order Markov chain model was used to generate 

a stochastic series of wet and dry days. A first order Markov chain is defined by its transition 

matrix, which contains the probabilities that the process transitions from one state to the next, 

conditional on the current state. Typically, rows represent current states and columns 

represent future states for a transition matrix (Lial et al. 1998). A transition matrix must be 

square, since all possible states of the process must be used as both rows and columns. 

Furthermore, each row sums to one, since the process must end in one of the states specified 

by the process. 

For the process modeled here, there are two states—a day is either wet or dry. The 

probability that a day is wet or dry is conditional on whether the previous day was wet or dry. 

This is summarized in the transition matrix P: P = 

1 
1 p 

* WW _ 

Pjd ^ PfU 
, where Pdd 

is the probability of a dry day following a dry day and P^d is the probability of a dry day 

following a wet day, following the convention that row subscripts define current states and 

column subscripts define fiiture states. Thus the precipitation status for any given day is 

completely defined by the two parameters Pdj and Pwd- However, because there are 365 

days, a total of 730 parameters are required. 

To reduce the number of parameters needed, the seasonal periodicity exhibited by 

these transition probabilities is utilized. Following the maximum likelihood method 



www.manaraa.com

67 

described by Woolhiser and Pegram (1979), a Fourier series was estimated for each 

probability. First the number of observed transitions from each state on each day are 

calculated and denoted o,", where ie{d,w} and indexes current states, j efdw/ and indexes 

fliture states, and n denotes the day of the year. The log-likelihood function is: 

365 

InZ(<z>|X) =  X 
nsl 

•n(^^(«))+ln( l  -  PM{n))+ 

alj ln{P^j(n))+alJn{\-P^(n))  

H, 
^«(w) =  ̂ , /+2 

A:-l 

Hw 

C^cos 
u. 

+ sin 
^nk'^  

U 

^.c/(«)  =  ̂ w+Z 
*=l 

COSI 
fnk '  

U; sin 
K 

(3.1) 

(3.2) 

(3.3) 

where K = 365/2;r a 58.091554 is the necessary nonnalizing constant, HD and //„. are the 

number of harmonics estimated for Pdd and /'w respectively, <f> is the parameter vector of 

Fourier coefficients {Aj, A^,Cjk^, , and X is the matrix of the a,", the number 

of observed transitions. The number of harmonics for each Fourier series was increased until 

the addition of a harmonic failed a Likelihood Ratio test at the 5% level of significance. The 

maximum likelihood estimates and standard errors are reported in Table 3.1 for Brookings 

and Boone, while Figures 3.1-3.2 illustrate the fit and smoothing of the data provided by 

the Fourier series. 

3.2.3.2 Exponential Model of Daily Precipitation 

A stochastic precipitation model was linked to the Markov chain model to determine 

the amount of precipitation on wet days. Several alternatives were available, but an 

exponential model was chosen for its simplicity (Richardson 1981). Defining R„ as the 

amount of precipitation for a given day n, R„ is a random draw from an exponential 
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Table 3.1. Fourier series coefficient estimates for the probability of a dry day following a dry 
day and the probability of a wet day following a dry day in Brookings, SD and Boone, lA 

Brookings, SD Boone, lA 
Coefficient® Estimate Standard Error Estimate Standard Error'' 

AeJ 0.7807 0.0025 0.7715 0.0037 
Cdi 0.1031 0.0035 0.0635 0.0051 
Sdi -0.0094 0.0035 -0.0206 0.0053 
Cd2 -0.0015 0.0034 

Sd2 0.0183 0.0036 

Cdi -0.0063 0.0034 
Sdj -0.0128 0.0035 

Aw 0.7712 0.0048 0.5716 0.0076 
Cw/ 0.0967 0.0071 0.0492 0.0107 
Swl -0.0063 0.0064 -0.0033 0.0108 
Cw: -0.0034 0.0070 0.0384 0.0104 
Sw2 0.0153 0.0065 0.0499 0.0110 
C^y3 -0.0067 0.0068 0.0022 0.0107 
Sw3 -0.0236 0.0067 -0.0248 0.0106 

See Equations (3.2) and (3.3) for coefficient definitions. 
^ Computed according to the method of Bemdt et al. (1974). 
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Figure 3.1. Observed and Fourier series estimated daily probability of a dry day following a 
dry day (top) and a dry day following a wet day (bottom) in Brookings, SD 
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Figure 3.2. Observed and Fourier series estimated daily probability of a dry day following a 
dry day (top) and a dry day following a wet day (bottom) in Boone, lA 

distribution with probability density function /(/?„) = A„c"^''', where the parameter A„ is 

specific to each day. As with the transition probabilities, the seasonal periodicity exhibited 

by the A„ was used to reduce the number of required parameters. 

Following the maximum likelihood method described by Woolhiser and Pegram 

(1979), a Fourier series was estimated for the parameter A. To express the log-likelihood 

function, define as the observed amount of precipitation for day n in year 3;, and define 

[0 if/?,„=0 
An = 11 r D n • log-likelihood flmction is: 

[1 if > 0 

365 r r 1 
\nL{9 \R,D)^ (3-4) 

/isl yssi 
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(3.5) 

where ^is the parameter vector of Fourier coefficients fA,  Ck, Sk},  T is the number of years, 

and //the number of harmonics. For estimation, the number of harmonics was increased 

until the addition of a harmonic failed a Likelihood Ratio test at the 5% level of significance. 

The maximum likelihood estimates and standard errors are reported in Table 3.2 for 

Brookings and Boone, while Figure 3.3 illustrates the fit and smoothing of the data provided 

by the Fourier series. 

3.2.3.3 Summary of Precipitation Model 

The generation of stochastic daily precipitation according to the first-order Markov-

e.xponential model described in this section requires three steps. First, conditional on the 

previous day's precipitation status, calculate the probability of a dry day using the 

appropriate Fourier series. Second, draw a uniform random variate between zero and one 

and determine whether the current day is dry or wet. Third, if the day is dry, the precipitation 

process is complete for the day—go to the next day. Otherwise, calculate the value of A 

using the appropriate Fourier series, draw the precipitation amount as an exponential random 

variate using this A, then go to the next day. 

3.2.4 Air Temperature Model and Parameter Estimates 

3.2.4.1 Introduction 

The procedure described by Richardson (1981) and Matalas (1967) was used to 

estimate the parameters necessary to generate a stochastic series of daily maximum and 

minimum air temperatures. In brief, the procedure assumes that temperatures are a 

continuous, multivariate, weakly stationary process with daily means and standard deviations 
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Table 3.2. Fourier series coefficient estimates for the parameter A of the exponential 
probability density function for Brookings, SD and Boone, lA 

Brookings, SD Boone, lA 
Coefficient" Estimate Standard Error'' Estimate Standard Error'' 

A 5.2815 0.0560 3.6183 0.0489 
c, 3.4095 0.0920 1.7404 0.0757 
s, 0.9470 0.0608 0.4353 0.0617 
C2 1.2737 0.0806 0.4926 0.0706 
s. 0.7630 0.0715 0.3211 0.0668 
Ci 0.4884 0.0702 0.2207 0.0655 
Si 0.3548 0.0728 0.2046 0.0675 
o 0.1094 0.0555 0.0404 0.0523 

0.3386 0.0580 0.2009 0.0565 
See Equation (3.5) for coefficient definitions. 

^ Computed according to the method of Bemdt et al. (1974). 
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Figure 3.3. Observed and Fourier series estimated daily value of A for the exponential 
probability density fxmction for Brookings, SD (top) and Boone, lA (bottom) 
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conditional on the wet or dry state of the day. First separate Fourier series are estimated for 

the mean and standard deviation for both wet and dry days for the maximum and minimum 

air temperature. Next the time series of each variable is reduced to a time series of residuals 

by removing the daily means and standard deviations, then the serial correlation and cross 

correlation coefficients are calculated. 

3.2.4.2 Fourier Series for Daily Mean and Standard Deviation of Maximum and Minimum 

Air Temperatures 

The mean and standard deviation of the maximum and minimum air temperature for 

each day of the year was calculated separately for wet and dry days. To reduce the number 

of parameters required, the seasonal periodicity of the means and standard deviations was 

utilized. Using a least squares criterion, a separate Fourier series for each of the eight 

parameters was estimated—the wet and dry mean and the wet and dry standard deviation for 

the maximum temperature, and the same four parameters for the minimum temperature. A 

general formulation of the equation used for each parameter estimation is: 

where 6 is the parameter for which the Fourier series is being estimated and n is the day of 

the year. The coefficients to be estimated are .4, the CK and SK, and H, the number of 

harmonics for the series. For each Fourier series, harmonics were increased until the addition 

of a harmonic failed a Likelihood Ratio test at the 5% level of significance. Coefficient 

estimates and standard errors for all eight Fourier series for both Brookings, SD and Boone, 

lA are reported in Tables 3.3 - 3.10, while Figures 3.4 - 3.11 illustrate the fit provided by the 

Fourier series for both locations. 

(3.6) 
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Table 3.3. Fourier series coefficient estimates for the mean of the maximum air temperature 
on a dry day for Brookings, SD and Boone, lA 

Brookings, SD Boone, lA 
Coefficient® Estimate Standard Error Estimate Standard Error 

A 56.2517 0.0617 60.4045 0.0939 
c, -29.5203 0.0872 -28.0091 0.1328 
s, -9.4464 0.0872 -8.5034 0.1328 
C2 -3.0251 0.0872 -3.0917 0.1328 
Si -0.6941 0.0872 -1.0609 0.1328 
Cs 0.1797 0.0872 -0.2957 0.1328 
s, -0.2027 0.0872 0.3601 0.1328 
C4 0.3126 0.0872 -0.1516 0.1328 
S4 0.8663 0.0872 0.7117 0.1328 

^ See Equation (3.6) for coefficient definitions. 
" Computed using the Gauss-Newton method with the quadratic form of the analytic first 
derivatives, see Greene (1997) p. 139. 

Table 3.4. Fourier series coefficient estimates for the mean of the maximum air temperature 
on a wet day for Brookings, SD and Boone, lA 

Brookings, SD Boone, lA 
Coefficient" Estimate Standard Error'' Estimate Standard Error'' 

A 51.9957 0.1353 57.3062 0.1533 
c, -30.5627 0.1914 -27.7780 0.2168 
Si -9.3814 0.1914 -9.0578 0.2168 
C: -2.2156 0.1914 -2.3425 0.2168 
S: -0.3683 0.1914 -1.0260 0.2168 
Cs -0.0083 0.1914 
S3 -0.6594 0.1914 

See Equation (3.6) for coefficient definitions. 
'' Computed using the Gauss-Newton method with the quadratic form of the analytic first 
derivatives, see Greene (1997) p. 139. 
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Table 3.5. Fourier series coefficient estimates for the mean of the minimmn air temperature 
on a dry day for Brookings, SD and Boone, lA 

Brookings, SD Boone, lA 
Coefficient'' Estimate Standard Error Estimate Standard Error 

A 31.2684 0.0552 35.7891 0.0851 
c, -26.3254 0.0781 -25.4551 0.1204 
s, -8.3304 0.0781 -7.6758 0.1204 
C: -1.4249 0.0781 -1.2151 0.1204 

-0.5198 0.0781 -0.6731 0.1204 
Cj -0.5433 0.0781 -0.5060 0.1204 
Ss -1.2559 0.0781 -1.0473 0.1204 
o 0.1131 0.0781 
5^ -0.2720 0.0781 
Cs 0.0743 0.0781 
Ss 0.3328 0.0781 
Ce 0.4958 0.0781 
Ss -0.0171 0.0781 

See Equation (3.6) for coefficient definitions. 
'' Computed using the Gauss-Newton method with the quadratic form of the analytic first 
derivatives, see Greene (1997) p. 139. 

Table 3.6. Fourier series coefficient estimates for the mean of the minimum air temperature 
on a wet day for Brookings, SD and Boone, lA 

Brookings, SD Boone, lA 
Coefficient'' Estimate Standard Error Estimate Standard Error 

A 33.5774 0.1367 38.3504 0.1548 
Ci -27.1519 0.1934 -25.0132 0.2189 
s, -8.7806 0.1934 -8.0771 0.2189 
C: -3.0643 0.1934 -2.3501 0.2189 

-\21A1 0.1934 -1.2593 0.2189 
Cj -0.7844 0.1934 -0.9538 0.2189 

-1.2311 0.1934 -0.9808 0.2189 
See Equation (3.6) for coefficient definitions. 

'' Computed using the Gauss-Newton method with the quadratic form of the analytic first 
derivatives, see Greene (1997) p. 139. 
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Table 3.7. Foxirier series coefficient estimates for the standard deviation of the maximum air 
temperature on a dry day for Brookings, SD and Boone, lA 

Brookings, SD Boone. lA 
Coefficient® Estimate Standard Enor Estimate Standard Error'' 

A 11.1102 0.0395 10.0688 0.0670 
c, 2.8808 0.0559 2.9809 0.0947 
s, 1.2214 0.0559 1.3168 0.0947 
c, -0.5267 0.0559 -0.6754 0.0947 
5; -0.2341 0.0559 -0.1711 0.0947 
Q 0.1342 0.0559 

0.2585 0.0559 
c, 0.2079 0.0559 
s-. 0.3425 0.0559 
Cs -0.1920 0.0559 
Ss 0.2608 0.0559 
Q -0.2079 0.0559 

0.0854 0.0559 
C- -0.0636 0.0559 
5- -0.2245 0.0559 
Q -0.0874 0.0559 
5-^ -0.2487 0.0559 

See Equation (3.6) for coefficient definitions. 
^ Computed using the Gauss-Newton method with the quadratic form of the analytic first 
derivatives, see Greene (1997) p. 139. 

Table 3.8. Fourier series coefficient estimates for the standard deviation of the maximum air 
temperature on a wet day for Brookings, SD and Boone, lA 

Brookings, SD Boone. ,IA 
Coefficient" Estimate Standard Error Estimate Standard Error'' 

A 10.2603 0.0944 9.8459 0.1166 
c, 1.8704 0.1335 2.0811 0.1649 
s, 0.8781 0.1335 1.2429 0.1649 
C2 -0.6026 0.1335 -0.9649 0.1649 
S2 -0.5283 0.1335 -0.6009 0.1649 
Ci 0.5335 0.1335 
55 0.4154 0.1335 

See Equation (3.6) for coefficient definitions. 
'' Computed using the Gauss-Newton method with the quadratic form of the analytic first 
derivatives, see Greene (1997) p. 139. 
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Table 3.9. Fourier series coefficient estimates for the standard deviation of the minimum air 
temperature on a dry day for Brookings, SD and Boone, lA 

Brookings, SD Boone, lA 
Coefficient'' Estimate Standard Error Estimate Standard Error'' 

A 10.4959 0.0400 9.5900 0.0616 
c, 3.0695 0.0566 2.8803 0.0872 
s, 0.9792 0.0566 0.8108 0.0872 
C: 0.7013 0.0566 0.5321 0.0872 
Si 1.0220 0.0566 0.4681 0.0872 
Ci 0.2662 0.0566 0.3502 0.0872 
Si 0.8091 0.0566 0.7953 0.0872 
Q -0.1969 0.0566 
5, -0.2837 0.0566 
Cj -0.1496 0.0566 
55 -0.3494 0.0566 

See Equation (3.6) for coefficient definitions. 
'' Computed using the Gauss-Newton method with the quadratic form of the analytic first 
derivatives, see Greene (1997) p. 139. 

Table 3.10. Fourier series coefficient estimates for the standard deviation of the minimum air 
temperature on a wet day for Brookings, SD and Boone, IA 

Brookings, SD Boone, lA 
Coefficient^ Estimate Standard Error Estimate Standard Error^ 

A 9.3562 0.0970 8.9704 0.1161 
c, 3.8418 0.1371 4.1114 0.1643 
SI 0.9883 0.1371 0.9426 0.1643 
C2 0.6352 0.1371 0.5169 0.1643 
S2 0.5066 0.1371 0.2418 0.1643 
Ci 0.1161 0.1371 0.3764 0.1643 
SS 0.5401 0.1371 0.6857 0.1643 
c. -0.3181 0.1371 
5"^ -0.3372 0.1371 
Q -0.1425 0.1371 
55 -0.7686 0.1371 
C<s 0.0023 0.1371 

-0.4120 0.1371 
See Equation (3.6) for coefficient definitions. 

^ Computed using the Gauss-Newton method with the quadratic form of the analytic first 
derivatives, see Greene (1997) p. 139. 
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Figure 3.4. Observed and Fourier series estimated daily mean (°F) of maximum air 
temperature for a dry day (top) and for a wet day (bottom) for Brookings, SD 
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Figure 3.5. Observed and Fourier series estimated daily mean (°F) of maximum air 
temperature for a dry day (top) and for a wet day (bottom) for Boone, lA 
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Figure 3.6. Observed and Fourier series estimated daily mean (®F) of minimum air 
temperature for a dry day (top) and for a wet day (bottom) for Brookings, SD 

-10 

300 0 50 100 150 200 250 350 

Day of Year 

c CS 
s 

• • 

-10 

200 300 0 50 100 150 250 350 

Day of Year 

Figure 3.7. Observed and Fourier series estimated daily mean (°F) of minimum air 
temperature for a dry day (top) and for a wet day (bottom) for Boone, lA 
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Figure 3.8. Observed and Fourier series estimated daily standard deviation (°F) of maximum 
air temperature for a dry day (top) and for a wet day (bottom) for Brookings, SD 
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Figure 3.9. Observed and Fourier series estimated daily standard deviation (°F) of maximum 
air temperature for a dry day (top) and for a wet day (bottom) for Boone, lA 
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Figure 3.10. Observed and Fourier series estimated daily standard deviation (°F) of 
minimum air temperature for a dry day (top) and for a wet day (bottom) for Brookings, SD 
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Figure 3.11. Observed and Fourier series estimated daily standard deviation (°F) of 
minimum air temperature for a dry day (top) and for a wet day (bottom) for Boone, IA 
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3.2.4.3 Correlation oj Maximum and Minimum Air Temperatures 

Following the method described by Matalas (1967), the maximum and minimum air 

temperatures were assumed to follow a multivariate weakly stationary process defined by: 

Zn*Uy=AXn.y+B£„,,,y, (3.7) 

where Xn.y and Zn+i.y are (2 x 1) matrices for days n and n + 1 of year whose elements are 

the residuals for the maximum and minimum air temperatures for the specified day and year, 

while s„,y is a (2 X 1) matrix of independently distributed normal random variables for the 

specified day and year with a mean of zero and a variance of one. Residuals for the 

maximum and minimum air temperatures for any day are obtained by removing the mean and 

standard deviation for that day calculated with data from several years. A and 5 are (2 x 2) 

matrices whose elements are defined such that the series of residuals has the desired serial 

correlation and cross-correlation coefficients. Assuming (3.7) implies that the residuals are 

also normally distributed and follow a first-order linear autoregressive process. Multiplying 

each residual by the appropriate daily standard deviation (wet or dry) and adding the 

appropriate mean (wet or dry) then generates a series of daily maximum and minimum air 

temperatures. 

The elements of A and B are defined as functions of the lag 0 and lag 1 cross-

correlation coefficients of the maximum and minimum air temperature residuals at a location. 

For this application, the series of daily residuals for the maximum and minimum air 

temperatures are calculated by subtracting the appropriate observed mean (wet or dry) for 

each day and dividing by the appropriate observed standard deviation for each day. Using 

these residuals, A and B are determined by the following equations: 
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A = M.A/o"' 

BB' '  =Mq-M^M-'M( .  

(3.8) 

(3.9) 

Mo and M\ are matrices of the lag 0 and lag 1 correlation coefficients respectively, defined as 

follows: 

Mo = 

M, = 

1 P.V„Af„ 

Ps„x„ ' 

Px„N.^ 

Pn„X.^ PN„N.^ 

(3.10) 

(3.11) 

where X and N denote the residuals for the maximum and minimum air temperature 

respectively and their subscripts denote lag 0 or lag 1. Thus Px„s„ is the lag 0 cross 

correlation coefficient between the residuals for the maximum air temperatiu-e and the 

residuals for the minimum air temperature, p ^ and p v„n , 1 serial correlation 

for the residuals of the maximum and minimum air temperature respectively, p y ^ is the 

cross correlation coefficient between the lag 0 maximum air temperature residuals and the 

lag 1 minimum air temperature residuals, while ^ is the cross correlation coefficient 

between the lag 0 minimum air temperature residuals and the lag 1 maximum air temperature 

residuals. Table 3.11 reports the serial correlation and cross correlation coefficients needed 

to construct the A/o and M\ matrices for Brookings, SD and Boone, lA. 

To solve (3.9) for j5, first define a matrix Z = BB . Using the spectral decomposition 

of Z, Z = C/IC^ where C is the matrix of eigenvectors, and A is the matrix with the 

associated eigenvalues down the main diagonal and zeros for all other elements (see Greene 



www.manaraa.com

83 

Table 3.11. Correlation coefficients for temperature residuals and derived matrix elements 
for Brookings, SD and Boone, lA 

Coefficient or Element Value for Brookings, SD Value for Boone. IA 
0.69580 0.69215 

Px„X., 
0.67244 0.61300 

0.61889 0.64883 

0.51265 0.51185 

0.59365 0.55112 

^I.l 0.61206 0.49666 
^1.2 0.08678 0.16809 
^2.1 0.31603 0.19587 
Aiji 0.39900 0.51326 

Bu 0.71160 0.75178 
Bi 2 ~ B2 \ 0.19382 0.21057 

Bia 0.72656 0.71742 

(1998) p. 38). Note that = Z, implying that B = Z'^", then by Greene's Theorem 

2.10, 5 = Z'^" = Cyl'^'C Table 3.11 also reports the elements of A and B. 

3.2.4.4 Summary of Air Temperature Model 

The generation of stochastic daily maximum and minimum air temperatures according to the 

procedure described in this section requires four steps. First, draw two independent standard 

normal (mean zero, variance one) random variates for the day. Second, use equation (3.7) to 

calculate the residuals for the day's maximum and minimum air temperatiore. Third, use the 

day's precipitation status (wet or dry) to calculate the mean and standard deviation of the 

maximum and minimum air temperature using the appropriate Fourier series. Fourth, 

determine the day's maximiun and minimum air temperature by multiplying the appropriate 

residual by the standard deviation and adding the mean. 
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3.2.5 Soil Temperature Model 

3.2.3.1 Introduction 

A method of determining daily soil temperatures was needed, since a significant 

portion of the com rootworm life cycle takes place underground. Modeling the temperature 

of the top 10 cm layer of soil was chosen based on typical depths reported in the literature for 

com rootworm activity (Calkins and Kirk 1969, Gustin 1981, Mullock et al. 1995). The 

method of Potter and Williams (1994) was used with a few modifications to determine the 

daily average soil temperature as a function of air temperature. The method of Logan et al. 

(1979) was modified in accordance with data presented in Gupta et al. (1983) to determine 

the daily maximum and minimum soil temperature as a function of the average soil 

temperature. 

3.2.5.2 Daily Average Soil Temperature Model 

The model of Potter and Williams (1994) derives the average soil temperature for a 

layer below the surface by first modeling the temperature of the bare soil surface, which 

closely follows the air temperatures, then adjusting this bare soil surface temperature to 

account for soil cover. Next a physically derived depth-weighting factor is used to determine 

the average soil temperature at any given depth between the soil surface and the constant 

temperature depth. Following their model, the potential temperature of the bare soil for day 

n (PTBSn) depends on a day's precipitation status as follows: 

PTBS„ = 

NWD 
^ <" if day is wet 

NWD 0-12) 
if the day is dry 
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where NWD is the number of wet days over the past thirty days (including the current day), 

TMax.n, and T^vgM are the maximum, minimum and average air temperature for day n 

(the average temperature is the simple average of the maximum and minimum), and 

~ the amplitude of the temperature change on day n. The actual 

temperature of the bare soil (TBS„) is then the two-day-moving average of the PTBS. 

Next the average soil surface temperature for day uses the TBS, but 

accounts for soil cover by using a lagged cover factor {LCF„) as follows: 

T;^' =LCFJBS,.,*(\-LCF,)TBS, (3.13) 

LCF, = MAX{BCF,„SCF„ (3.14) 

BCFn is the biomass cover factor and SCFn is the snow cover factor for day n calculated by 

the following empirically derived equations: 

BCF„ = 7 ^2 r (3.15) 
" 5„+exp(5.3396-2.39515,,) 

SCF„ = ^ r (3.16) 
' 5„+exp(2.303-0.21975„) 

where B„ is the total above ground crop biomass and surface residue (Mg/ha) and S„ is the 

water content of the snow cover (mm) on day n. After testing the model. Potter and Williams 

(1994) impose the following restrictions; 0 < BCFn <0.19 and 0 < SCF„ < 0.95. 

To determine B„, the base cover contributed by crop residue was assumed to be 1.4 

Mg/ha, which is approximately the amount of residue left from continuous com production 

under conventional tillage. This was determined by assuming a 1; 1 ratio of grain to residue 

production for com, following Larson et al. (1978, cited in Havlin et al. 1990) and assimiing 
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a bushel of com weighs 56 lbs (USDA 1979). Thus a typical yield for Brookings, SD of 100 

bu/ac implies 6.3 Mg/ha of residue and a typical yield for Boone, lA of 150 bu/ac implies 9.4 

Mg/ha. Next, standard tillage operations for conventional tillage com were taken from state 

extension budgets for South Dakota (chisel plow and tandem disk) and Iowa (chisel plow, 

tandem disk, and field cultivator) (SDSU Extension Economics 1998, ISU Extension 1998). 

Residue mixing efficiencies typical for these operations were obtained from the EPIC User's 

Guide—chisel plow: 0.42, tandem disk: 0.50, field cultivator: 0.70 (Mitchell et al. 1997). 

Thus 6.3 X 0.42 x 0.50 = 1.32 and 9.4 x 0.42 x 0.50 x 0.70 = 1.38 were rounded up to 1.4 to 

serve as a simple estimate of the base cover from crop residue. 

To include the contribution of growing crop biomass to B„, the year was divided into 

four periods roughly coinciding with seasons: (1) no living crop biomass, (2) linear biomass 

accumulation during crop growth, (3) maintenance of living crop biomass during summer, 

and (4) linear decline of crop biomass during senescence and harvest. For each of these 

periods, the value of Bn was determined as follows: 

November 1 to plant day B„= 1.4 

Plant day to peak flower 

Peak flower to harvest 

Harvest to November 1 

=1.4 + 7 

Bn = 9A 

5 =9.4-71 

current day - plant day 

peak flower - plant day 

/ current day - harvest 

(3.17a) 

(3.17b) 

(3.17c) 

(3.17d) 
305 - harvest 

Plant days range from early May to early June, with early to mid-May typical. Peak flower 

depends on the maturity of the com hybrid and occurs from early August to mid September, 
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with mid to late August typical. Harvest can range from as early as late September to as late 

as late November, but mid-October is typical. 

To determine S„, the water content of snow cover (mm), a model of snowfall 

accumulation and snowmelt was used. If precipitation occurred on a day, it was categorized 

as snowfall if the maximum air temperature was less than 40° F and the average was below 

35° F. The multiple-layer soil temperature model of snowmelt developed by Williams 

(1995) was adapted to the single-layer soil temperature model used here. If a snow pack is 

present and the average soil temperature on day n () is above zero, then the millimeters 

of snowmelt on day n (5M„) occurs according to the empirically derived equation: 

SM,=T,^,.(I.S2*0.SAMIN{TZ,,T,^J). (3.18) 

The method of Potter and Williams (1994) was then used to determine the daily 

average soil temperature at 5 cm, the middle of the top 10 cm of soil, as follows: 

+o.5T-r:"+o.5DfVF(f-r-^^:"}.  0.19) 

T is the long term average air temperature that approximates the constant soil temperature 

maintained at some sufficient depth (6.2°C for Brookings and 8.5°C for Boone) and DWF is 

the depth weighting factor. Potter and Williams (1994) equations (7) - (11) were used to 

determine the value of DWF over a wide range of soil bulk density and soil water conditions. 

The value changed very little (0.2237 - 0.2260), even under extraordinarily unlikely 

conditions, so an average value of 0.225 was used for all simulations. Because the model 

tended to under predict average soil temperatures (Potter and Williams 1994), the average 

was increased by 2.5% for all simulations. 
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3.2.5.3 Daily Maximum and Minimum Soil Temperature Model 

To determine the daily maximum and minimum soil temperature, the method of 

Logan et al. (1979) was modified to extrapolate from air temperature extremes to near-

surface soil temperature extremes. Their method was intended to extrapolate from measured 

temperatures at one depth to temperatures at another depth and not from surface to below-

ground temperatures. Essentially, the method assumes that the amplitude at one depth is 

proportional to the amplitude at another depth, with the constant of proportionality depending 

on the difference in depth. Using Logan et al.'s equation (9), a value of 0.98 was estimated 

for a depth difference of 10 cm. Assuming that the soil surface temperature is the same as 

the air temperature, this factor implies that the amplitude of soil temperatures at 5 cm is 98% 

of the amplitude of the air temperature. However, this does not accoimt for dampening due 

to soil cover, nor to additional heat input from solar radiation, especially significant in spring 

when the soil is dark and crops do not shade the soil surface. 

To adjust for soil cover, the constant of proportionality was reduced to 0.95 for days 

between March 1 and November 15 (approximately soil thaw to soil freeze). Benoit and Van 

Sicide (1991) report data on winter soil temperatures for various tillage-residue management 

systems in west central Minnesota. These data indicate that the difference between the 

maximum and minimum air temperatures was around 10-12°C, while the difference between 

the maximum and minimum soil temperatures at 5 cm was about 2-4°C, or about 25% less. 

Thus from November 15 to March 1, the constant of proportionality was set to 0.25. 

Research has also shown that the variation of near-surface soil temperatures around 

the average is asymmetric and changes throughout the season due to tillage and crop growth 

(Gupta et al. 1981, Gupta et al. 1983, Potter and Williams 1994). Data reported by Gupta et 
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al. (1983) indicate that in spring the maximum soil temperature is approximately 25% more 

above the average soil temperature than the maximum air temperature is above the average 

air temperature. This occurs since the soil is generally dark and no crops provide shade. In 

summer the factor is approximately 15%, since solar radiation has increased, but crops begin 

to provide increasingly more shade. 

All these adjustments are summarized in the equations used to determine the soil 

maximum and minimum temperatures: 

Spring (March 1 to plant day + 42 days): 

7;r;,=i.25fe,+o.95o:'] (3.20a) 

(3.20b) 

Summer (plant day + 42 days to September 15): 

(3.21a) 

(3.21b) 

Fall (September 15 to November 15): 

(3.22a) 

(3.22b) 

Winter (November 15 to March 1): 

7;z', =i.oofe +0.25or] 

7:;:>1.00[r,- -0.25ar] 

(3.23a) 

(3.23b) 
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2.2.5.4 Summary of Soil Temperature Model 

The overall performance of the soil temperature model was difficult to evaluate, since 

no actual soil temperature data were available. However, it is based on modeling 

assumptions and equations well-tested in the literature, e.g. Potter and Williams (1994) is the 

soil temperature model used for EPIC. The soil temperatvire model developed here predicts 

the daily average, maximum, and minimum soil temperature as a flmction of the daily 

maximum and minimum air temperature and precipitation status (wet or dry). Furthermore, 

it accounts for the impact of crop growth and seasonal changes, including snowfall 

accumulation. 

3.2.6 Algorithm for Calculating Degree Days 

Many com rootworm population models require heating and/or cooling degree-days 

for air and/or soil temperatures (e.g. Hein and Tollefson 1987, Naranjo and Sawyer 1989a, 

Schaafsma et al. 1991. Davis et al. 1996). As a result, it seems appropriate to report the 

algorithm used to calculate heating and cooling degree days, since several alternative 

methods are available. Higley et al. (1986) compare three methods and recommend the sine 

wave method proposed by Arnold (1960), with the modifications and algorithm developed by 

Allen (1976). 

In essence, all degree day algorithms use simplifying assumptions to estimate the area 

under the time series of observed temperatures. Allen's (1976) algorithm calculates degree 

days by half days, assuming twelve hours between the previous day's maximum, the current 

day's minimum, and the current day's maximum. The temperature time series is 

approximated as a sine wave between the two observed times, then the area under this time 
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series, after accounting for upper and/or lower temperature thresholds, is the degree days for 

the half day. 

For the model here, only a lower temperature threshold was utilized; this threshold is 

often referred to as the base temperature {Tease) in the literature. Only three relationships 

between the observed temperatures and the base are possible: (1) observed maximum and 

minimum below the base, (2) observed maximum and minimum above the base, and (3) 

observed minimum below the base and observed maximum above the base. For the first two 

cases, determination of heating degree days (HDD) and cooling degree days (CDD) for a half 

day is rather simple. Calculating the area of a simple rectangle yields the same area as the 

sine function, since the sine function is symmetric. Half of the rectangle's area is the degree 

day accumulation occurring during the half day, hence the 0.5 factor in equations (3.24b) and 

(3.25a). The formulas for half days are: 

Case 1: 

Case 2: 

For the third case, the calculations are more complex since the base temperature 

threshold is crossed. Defining a = ~ ^Mm) as the amplitude of the temperature change 

and 9 as the estimated time (in radians) when the temperature crosses the base temperature 

threshold: 

HDD = 0.0 (3.24a) 

Cfl0 = 0.5(r,„,-r„j (3.24b) 

HDD = Q.iT„-T^) (3.25a) 

CDD = O.Q (3.25b) 
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0 = tan -1 
—(T -T  ) 

V Base '• /(vg / 

1 -

(3.26a) 

HDD = — 
In 

CDD = 
ITZ 

(T'toe - + acos(^) 

(3.26b) 

(3.26c) 

To accommodate an hourly time step simply requires changing the ^ to ^ in equations 

(3.24b) and (3.25a) and the — to —^ in equations (3.26b) and (3.26c). 
2K LAN 

3.3 Corn Rootworm Population Model 

3.3.1 Introduction 

The com rootworm population model developed here primarily uses the model of 

Nareinjo and Sawyer (1989a, 1989b), but with some modifications and extensions necessary 

to fulfill the needs of this study. This section presents the details of the population model as 

used, so the study can be replicated, and explains and justifies any differences between this 

model and the original model of Naranjo and Sawyer. The interested reader should consult 

the original papers of Naranjo and Sawyer to obtain a more thorough discuss of the 

assumptions and justification of the original model. 

The model of Naranjo and Sawyer was developed fi-om both laboratory and field data 

and documented in several papers (Naranjo and Sawyer 1987,1988a, 1988b, 1989a, 1989b). 

It is a multiple-cohort age-structured process model of the single season adult population 

dynamics and oviposition of northern com rootworm, with stochastic development and 
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advancement. A cohort is the group of individuals who entered a given life stage during the 

same time period, e.g. all the adults who emerged from their pupal cells during the same half-

day. The model maintains several cohorts for each life stage and, since the individuals in the 

same cohort are all of the same age and this age is explicitly modeled, the model is a 

multiple-cohort age-structured model. Individual development within a life stage and 

advancement to the next stage is stochastic, with the probability of advancement conditional 

on age. To extend the model to cover the fiill life cycle and full season required a model of 

egg hatch and larval and pupal survival to adult emergence. These models were developed 

primarily from the work of Woodson and Ellsbury (1994) and Riedell et al. (1996). 

What follows in the rest of this section is first a description of the modified form of 

Naranjo and Sawyer's model of adult emergence and oviposition, then a description of the 

hatch and larval survival model used to complete the life cycle model. 

J.3.2 Model of Adult Population Dynamics and Oviposition 

2.3.2.1 Introduction 

The original model of Naranjo and Sawyer includes seven stages of the com 

rootworm life cycle; (1) male pupae, (2) female pupae, (3) aduh males, (4) immature adult 

females, (5) mature adult females, (6) post-reproductive adult females, and (7) eggs. 

Populations in the first two stages are not modeled, but obtained from field data, or in the 

case of the model used here, from the model of larval survival described in the next sub­

section. The development and hatch of the last stage, eggs, is not modeled either, but serves 

as input into the egg hatch model described in the next sub-section as well. 

The original model of Naranjo and Sawyer is presented with continuous time 

equations, but when actually implemented, a discrete time step of one day is used. The 
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model presented here is presented in the discrete form as implemented and a half day time 

step is used. The half day time step explicitly accounts for the fact that the maximum and 

minimum temperatures for a day do not occur at the same time. For any given day of the 

year, the first half day occurs from the previous day's maximum to the current day's 

minimum, while the second half day occurs from the current day's minimum to the current 

day's maximum. Following Naranjo and Sawyer (1989a), the first half day lasts 15 hours (2 

PM to 5 AM for air, 4 PM to 7 AM for soil) and the second half day lasts 9 hours (5 AM to 2 

PM for air, 7 AM to 4 PM for soil). 

The com rootworm population has experienced strong evolutionary selection pressure 

to coordinate their life cycle with the development of their host plant. As a result, com 

phenology exerts an important influence on adult population dynamics and oviposition. In 

the model of Namajo and Sawyer, this influence is incorporated by the use of the planting 

date and day of peak com flowering in several equations. The day of peak flower is 

determined by the variety of com planted (the "day" value of the variety) and the weather. 

3.3.2.2 Equations for Adult Population Dynamics 

For the four adult stages, the population of each cohort and advancement into the next 

stage is described by the following system of equations: 

ET' if c = l > /mmF 
L\t (3.27) 

ImmF 

(3.28) 
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)] ifc = I 

if c> 1 

(3.29) 

Stale 
(3.30) 

P^j is the population per square meter of adults in life stage s, in cohort c. during time period 

t. Life stage s e{lmmF, MatF, Post, Male}, for immature female, mature female, post-

reproductive female, and male respectively. Cohorts range in number between 1 and C,' for 

each stage, with the number C/ varying depending on the time period. When a new cohort 

advances to the next stage, it starts as cohort c = 1, and all existing cohorts have their index c 

incremented by one. The time period te{nl,n2}, where n is the day of the year and n\ 

denotes the first half day for day n, while nl denotes the second half day for day n. Lastly, kt 

is the time period conversion factor that converts variables that are in units of days to half 

days. For / = nl, = 15/24, since the first half day is 15 hours long, and for / = n2, k, = 9/24, 

since the second half day is 9 hours long. 

In equations (3.27) and (3.30), £/ is the number of adults of stage s emerging from 

pupal cells during time step /, and these individuals are the new first cohort for the specified 

stage. The summations in the first parts of equations (3.28) and (3.29) serve the same 

purpose—to determine the number of adults advancing to the next stage and becoming the 

new first cohort. Lastly, M is the daily proportional mortality rate and is the probability 

of that members of cohort c will advance during time period t. The equations for 
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detennining adult emergence, mortality and advancement probabilities are presented in the 

next sub-sections. 

3.3.2.3 Adult Emergence 

The emergence of adults from the soil depends on temperature, day of com planting, 

and day of com peak flowering. Naranjo and Sawyer estimated separate equations for male 

and female emergence from field data for log-normal density ftmctions of the general form: 

is the total number of males {s = Male) or females (5 = ImmF) emerging and is 

determined from , the total number of males and females emerging. is obtained 

from the model of larval survival, and the proportion of that is female (v|/) depends on 

the plant day and day of peak flower according to the following equation; 

where x  is the sum of soil degree days with a base of 10°C from March 1 to the plant date 

and air degree days with a base 10°C from the plant date to the day of peak flower. The 

value of y/ was truncated at 0.85 to ensure that no more than 85% of the emerging adults 

were female. 

In equation (3.31), g, is time measured in accimiulated soil degree days with a base of 

10°C from March 1, and and are the mean and standard deviation of emergence 

times on a natural logarithm scale for the specified stages. Mean emergence times depend on 

the planting date and day of peak flower according to the following equations: 

(3.31) 

= -0.15 + 0.00080x, (3.32) 

(3.33a) 
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cxpi/iT"" )= 800-85 + 0.24x (3.33a) 

where x is as defined for equation (3.32). Lastly, = 0.0901 and a'""'' = 0.0998 . 

3.3.2.4 Mortality 

The daily proportional rate of mortality depends on the proportion of com plants in 

flower ( according to the following equation; 

) = Kuu. exp(-(3.34) 

where M,wax is the maximum proportional rate of mortality and (j> determines the rate of 

decline in mortality as the proportion of com plants in flower increases. For the model as 

implemented here, A/vto was set to 0.0715 and (f> to 1.924. This value for M^ax is 

approximately a 50% reduction from the value used by Naranjo and Sawyer (0.143) and was 

used to correct for prediction biases in the model estimates of population density noted by 

Naranjo and Sawyer. 

The model for com phenology uses a probability density function for plant 

development that depends on physiological time as measured by d, the air degree days for a 

base of 10°C accumulated from the plant date. Naranjo and Sawyer use a logistic density 

fimction and iffjiw is determined by integrating between the limits c\ and cl as follows: 

1 1 
flwr 

1 + exp 
cl-d 

1 + exp 
c\-d 

(3.35) 

4d } ' 4d 

Values for cl and c2 depend on temperature as well, and are determined as follows: 

cl =-2.57 + 0.863/ (3.36a) 

c2 = 127.51 + 0.97>', (3.36b) 
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where y is the air degree days for a base of 10°C accumulated from planting date to the day 

of peak flower. 

3.3.2.5 Age-Dependent Probability of Advancement 

Immature and mature females develop at rates that depend on air temperatures and 

residence time within a stage varies considerably among individuals. A multiple-cohort age-

dependent stochastic model of female development was constructed by linking an age-

dependent distribution model for stage residence time with a temperature-dependent model 

for rates of development within a stage. To reiterate, a cohort is defined as a group of 

individuals who entered a given stage at the same time. In the model as implemented, two 

variables define a cohort and must be updated for each time step: the niimber of individuals 

in the cohort () and their physiological age (a^ ,), where c denotes the cohort number, t 

the time period and s the stage identifier. Equations (3.27) - (3.30) determine the number of 

individuals in a cohort, while the equations governing the physiological aging process and 

the age-dependent probability of advancement remain to be defined. 

In equations (3.28) and (3.29), Alj is the probability' that individuals in cohort c and 

stage s will advance to the next stage during time period t. This probability depends on the 

physiological age of the individuals in the cohort as follows: 

Km )  

where F\a)  is the distribution fiinction of stage s  evaluated at age a.  To determine F'^a), 

define z = (V - a)/(V- U), then: 
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0 if a < U 

F{a) =" (l - if U < a < V 

1 if a > V 

(3.38) 

where the parameters U, V, 9, and q depend on stage se{ImmF, MatFJ as follows: = 

0.4710, = 0.0999, ̂ '"""^=2.0300, 2.8917, 6/"""^=- 1.0263, ̂''"'"= 1.2483, 

^ , J ^Ma,F ^ Q 547, 

The physiological age of the females in a cohort is determined by integrating the 

development rate function of the stage from the time individuals enter a stage. This 

development rate function depends on the temperature (7) and stage-specific parameters. For 

immature females, r{T) it is determined by the following equation; 

where Tis temperature in Kelvin, =0.1081, HA = 13158.39, HH= 58016.57, and TH = 

302.85. For mature females, r{T) is determined as follows: 

where again T is temperature in Kelvin, R = 0.0358, and HA = 10988.04. 

Following Naranjo and Sawyer, a sine function was used to interpolate hourly 

temperatures between maximum and minimum temperatures, again assuming that the 

maximum air temperature occurred at 2 PM and the minimum air temperattire occurred at 5 

AM, and two hours later for soil temperatures for both cases. Denoting the amplitude as 

a = ̂  (rv/at ~ ̂Min) ^6 period as p = l^hEnd - hsegm), where hj is the indicated hour of the 

day, the temperature (7) at any hour h is: 

^ T{R /298.15)exp[(///j /1.987X(1 /298.15) - (1 / T))] 

l + exp[(i////1.987X(l/77/)-(l/r))] 
(3.39a) 

r(T)  = T{R / 298.15)exp[(/i4 /1.987X(1 / 298.15) - (1 / T))] (3.39b) 
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100 

— Vm (3.40) 
\ P ) 

where kni is a constant depending on which half-day h is in. For the first half day, k„i = 0.75 

and for the second half day, k„2 = 0.25. 

Using this hourly time step, a simple summation technique was used to approximate 

the integral of the rate ftmction r(r). Denote and calculate the average development rate for 

any two subsequent hours hj and hj+i as follows: 

)) + ))) (3.41) 

Then the aging that occurs during any half-day time period t is; 

ag, = ' (3.42) 

where hBegm = 14 and 5 for wl and nl respectively, and hsnd = 29 and 14 for «1 and n2 

respectively. Then the age of any cohort c of stage s during any time period t is the sum of 

all the ag, that have occurred from the time period when the cohort was created (teegm) until 

the current time period t > tBegin-

0-43) 

where the ag, are those appropriate for the stage (immature or mature females). 

3.3.2.6 Oviposition 

Only mature females lay eggs. Mating is not modeled, but immature females are 

assumed to mate soon after emergence and the maturation process is essentially a period 

during which the fenilized eggs develop within the female imtil she is ready for oviposition. 

The daily rate of oviposition per female is an age-dependent function modeled in a marmer 
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similar to the advancement and rate of development. Using notation as in (3.27) - (3.30), the 

total number of eggs oviposited by mature females in cohort c in time period t is: 

pEggs _ , 
)PCT'] 

" (3.44) 

KTX + Zb(«cT ] if • 
Cal 

where 0(a)  is the age-dependent oviposition function. The total number of eggs oviposited 

by all mature females during the entire season is then the sum of the new oviposition 

occurring during each time period for all mature female cohorts existing during that time 

period: 

365 O""' 
/S' = 2 ZO'"?."' W-T' (3.45) 

/= !  t -1  

The age-dependent oviposition function 0[a)  is a combination of a temperature 

dependent rate function and an age-dependent normal density function: 

Q(a,,7')= ^^^exp 
<V2;r 

[ a , - M o ]  
LA;; 

(a,-a,.,) (3.46) 

where a, is the age of the mature female cohort, and /uo = 1.1222 and GQ = 0.6996 are the 

mean and standard deviation of the normal density function. 

The temperature-dependent fecundity function XD has exactly the same form as 

equation (4.40a), the development rate function for immature females, except the parameters 

have different values: R = 776.55, HA = 12249.96,////= 64747.54, and TH= 300.52. 

Fecundity was increased by 50% to correct for the consistent underestimation that Naranjo 

and Sawyer (1989a) noted occurred with their model. 
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3.3.2.7 Conclusion 

The equations and parameter values given in this section are those used for the model 

of adult population dynamics and oviposition. The original model of Naranjo and Sawyer 

included equations governing dispersal. However, the parameters for these equations were 

estimated sis the residuals needed to balance observed data with predictions, and as a result 

were extremely site- and time-specific. For this reason, the current model does not include a 

dispersal component. 

Naranjo and Sawyer have evaluated their model and conclude that their model 

provides "a reasonable facsimile of actual system behavior," but is not without its 

weaknesses. Consistent biases and other problems have been noted, and some parameter 

values were modified as an attempt to correct for these. Date requirements to implement the 

model are (1) air and soil temperatures, (2) total number of pupae surviving to emerge as 

adults, and (3) plant day and day of peak com flowering. These data are supplied by linking 

this model with the model of egg hatch and larval survival discussed in the next section and 

with the stochastic weather generation method discussed in the previous section. 

3.3.3 Model of Egg Hatch and Larval Survival 

3.3.3.1 Introduction 

Woodson et al. (1996) present a multiple cohort model of northern com rootworm 

egg development and hatch, but it does not include mortality. In addition, a multiple cohort 

model similar to the model of Naranjo and Sawyer for the adult stages was not available for 

the larval and pupal stages. As a result, the work of Woodson et al. (1996) and Woodson and 

Ellsbury (1994) was used to develop a model of the percent egg hatch, while data from the 
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work of Riedell et al. (1996) was used to develop a density dependent model for the percent 

larval survival. 

3.3.3.2 Model of Egg Hatch 

The model of egg hatch predicts the percent of the eggs that survive the winter and 

hatch the next spring to become the initial larval population for the year. The model used 

here uses the model of Woodson et al. (1996) to predict the day of median egg hatch and the 

model of Woodson and Ellsbury (1994) to predict the percent hatch. 

Woodson et al. (1996) developed a multiple cohort model of northern com rootworm 

egg hatch with stochastic development and advancement analogous to the model of Naranjo 

and Sawyer for the adult stages, but without mortality. Similar to equations (4.40a'' and 

(4.40b), Woodson et al. estimated the parameters for the following development rate function 

r{T) for eggs: 

T ' - f  
r{T)  = exp(/?r)- exp RT -•  + A (3.47) 

S 

where Tis the temperature °C, R = 0.0050, T* = 43.3574, S = 3.6020, and X = -1.0609. As 

with adult aging, (3.40) was used to interpolate hourly soil temperatures and the integral of 

r{T) was approximated by the simple summation technique of (3.41) - (3.43). This integral 

is the developmental age of the eggs and was accumulated from March 15. The time of 

median egg hatch occurs when the developmental age equals one. The day of median egg 

hatch predicted by this model was used for determining the percent egg hatch using a 

modified form of the model of Woodson and Ellsbury (1994). After running 30 years of 

simulations, the range of the day of median egg hatch for Brookings, SD was May 15 to June 

14 and May 9 to June 4 for Boone, lA. The average Julian day of the median egg hatch was 
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152.6 (June 1-2) for Brookings, SD and 140.5 (May 20-21) for Boone, lA. These dates agree 

with field observations (Edwards et al. 1999). 

Woodson and Ellsbury collected feral northern com rootworm eggs from fields 

around Brookings, SD, then subjected these eggs to various temperature and duration 

treatments and recorded the percent hatch. From these data, they developed the following 

model for the percent hatch: 

H = 42.70 - 5.51 r + 5.61 D - 0.547^ - 026NR + 0.42^ (3.48) 

// is the percent hatch, T is the constant temperature "C to which the eggs were exposed, and 

D is the duration of this exposure in weeks. 

The constant temperature model of Woodson and Ellsbury was not suited to 

predicting percent hatch for eggs exposed to varying temperatures, such as eggs endure in the 

field. To solve this problem, a new model was developed from their model that determined 

the percent hatch for eggs exposed to field conditions. 

The new model determines the percent hatch as follows: 

H — BQ — B\CDDIO + B2CDD1Q' — B'ISTDXQ. (3.49) 

CDD\O and CDD\Q are the cooling degree days for a base of 10 °C accumulated Irom 

November 15 to the day of median egg hatch and its square respectively. STD\Q is the 

number of days that the soil temperature is below 10 °C during the 210 days previous to the 

day of median egg hatch. Lastly, the 5, are the parameters to estimate. Values for the 

independent variables could be determined from the temperature and duration treatments 

reported by Woodson and Ellsbury, as well as from the soil temperature model. To estimate 

the parameters of the model, for each temperature treatment (0, -2.5, -5, -7.5, -10 °C) and 

duration treatment (2, 4, 6, 8, 10, 12, 16 weeks), the percent hatch predicted by the Woodson 
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and Ellsbury model was calculated for use as observations of the dependent variable. The 

cooling degree days for each treatment and its square, as well as the duration in days, were 

then used as the independent variables for an ordinary least squares regression conducted in 

Microsoft Excel 97. Coefficient estimates and standard errors are reported in Table 3.12. 

Table 3.12. Ordinary least squares coefficient estimates and standard errors for 
the new model of the percent egg hatch for northern com rootworm 

Variable Coefficient Estimate Standard Error 

Intercept 5.382x 10' 3.133 X 10" 
CDDW" -1.358 X 10-2 9.713 X 10"^ 
Square of CDDio -1.700 X 10-^ 3.354 X 10-^ 
Davs soil temperature < 10 °C ̂ 5.502x 10-' 7.226 X 10'^ 
R- 8.910 X lO"' 

" Cooling degree days for base 10 °C accumulated from November 15 to the 
day of median egg hatch 
'' Counted for the 210 days before the day of median egg hatch 

In Table 1 of their paper, Woodson and Ellsbury report the mean percent hatch for 

each treatment (each treatment had 5 or 10 replicates). These data were used to evaluate the 

new model by comparing its performance to the model of Woodson and Ellsbury. Table 3.13 

reports the root of the mean square error (RMSE) and the mean absolute deviation (MAD) 

for each model relative to the data reported in Table 1 of Woodson and Ellsbury. In addition, 

the same criteria were used to evaluate the performance of the new model relative to the 

original model of Woodson and Ellsbury. These results are also included in Table 3.13. As 

expected, the new model does not fit the Table 1 data as well as the model of Woodson and 

Ellsbury. A better fit would result if the original data were used to estimate the new model. 

The plots in Figure 3.12 illustrate graphically the fits provided by each model relative to the 

data and to each other, and indicate that the new model performs adequately. 
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Table 3.13. Evaluation and comparison of Woodson and Ellsbury's (1994) 
model and new model of percent egg hatch for northern com rootworm 

Comparison MAD® RMSE" 

W«feE= model relative to W&E Table 1 data 4!47 5^85 

Equation (3.49) model relative to W&E Table 1 data 6.90 8.17 

Equation (3.49) model relative to W&E model 4.72 5.66 

^ Mean Absolute Deviation 
'' Root of the Mean Square Error 
W&E abbreviates Woodson and Ellsbury (1994) 

Fisher (1989) reports a mean percent hatch of 58% ± 12% for northern com rootworm 

eggs overwintered and hatched under field conditions near Brookings. Woodson et al. 

(1996) report a mean hatch percent of 74% and a range of 56%-81% for laboratory hatched 

post diapause northern com rootworm eggs. Using these data as guides, the percent hatch 

was truncated at 85% to prevent unrealistically high hatches from occurring, since equation 

(4.49) can predict a hatch percent > 100% if CDD\Q is low and STD\Q is high, as can occur 

during unusually warm winters. After conducting numerous simulations using this model, 

for Brookings the average percent hatch was 53%, and 81% for Boone. 

The initial larval population is the product of the previous year's total 

oviposition ( ) and the percent hatch, divided by 100 to convert the percent to a decimal: 

(3.50) 

This is then used to determine the total number of larvae that survive and emerge as adults in 

the current year. 
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Figure 3.12. Plots of Woodson and Ellsbury (1994) and Equation (3.49) model predictions 
against Woodson and Ellsbury Table 1 data (top and middle) and plot comparing model 
predictions (bottom) 

3.3.3.3 Model of Larval Survival to Emergence 

Researchers have developed models of larval development (e.g. Woodson and 

Jackson 1996, Jackson and Elliot 1988), but these do not include a survival component that 

accounts for mortality. Elliot et al. (1988) conducted field research on the survival of larvae 
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to adult emergence using the standard artificial infestation technique, but they did not 

develop a model. Woodson (1993, 1994) conducted similar research in a highly artificial 

laboratory environment, but also did not develop a model. The model for the percent of 

larvae that survive and emerge as adults used here was estimated using data from three years 

of field studies (1990-1991) conducted by Walt Riedell at the Northern Grains Insects 

Research Laboratory in Brookings, SD. Walt Riedell was generous enough to provide the 

complete data set from all the field experiments. See Riedell et al. (1996) for a complete 

description of the experiment and a sunmiary of the results. 

Western com rootworm eggs with known percent hatch were placed in the soil to 

obtain experimentally controlled initial populations of larvae in a com field. Among the data 

collected were the percent of larvae that survived and emerged from the soil as adults. Table 

3.14 summarizes the experimental data used in this section. Following the lead of Elliot et 

al. (1988) and Woodson (1993, 1994), a density dependent survival fimction seemed best. 

However, because a deterministic model ignores the tremendous variation of the percent 

survival observed for the same initial larval population, a stochastic survival function was 

estimated. Since survival must be between 0% and 100% and exploratory histograms 

showed that the data were unimodally distributed, a beta density fimction was chosen: 

Table 3.14. Summary of experimental data from Riedell et al. (1996) 

Initial Larval Population Average Survival'' Standard Deviation" 

(larvae/m~) (%) (%) 
1200 6.05 4.29 
2400 3.53 2.25 
4800 

d-T-1 ,1 ,  ,  -. •  r - ,  -

2.27 1.17 

There are 24 observations for each initial larval population, for a total of 72 observations. 
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t(,) r(ar)r(<y) (3.51) 

where s is the proportion of the initial larval population surviving to emerge as adults, F is 

the gamma function, and a and co are the parameters of the beta density to be estimated. 

To capture the effect of population density, the parameters of the beta density 

function were estimated as functions of the initial larval population. Various functions were 

tried and evaluated for statistical significance. The model that was chosen used a constant 

estimate for a and a linear function for co\ 

The parameters of the resulting composite function were estimated via maximum likelihood 

in TSP. The parameter estimates and associated standard errors are reported in Table 3.15. 

Figure 3.13 illustrates the density function and the effect of varying the initial larval 

population. Clearly incresising the initial larval population decreases both the mean and the 

variance of larval survival. 

Using the initial larval population the proportion of larvae that survive to 

emerge as adults {s) is drawn from the appropriately parameterized beta density. Next Erotai, 

the total number of adults that emerge, is determined as follows: 

Table 3.15. Parameter estimates for the conditional beta density function for larval survival 

CO — (Oq-̂  CO\Î  ̂larvae (3.52) 

Eto.OI-sP"'"''' (3.53) 

Parameter 

2.926 X 10" 

1.830 X 10' 

2.344 X 10-^ 

Estimate Standard Error" 
£. noi .. 1 n-' 6.091 X 10" 
8.066 X 10° 
7.348 X 10"^ 

A 
(OO 

0)1 

See equations (3.52) and (3.53) for meaning and definition of parameters. 
'' Computed according to the method of Bemdt et al. (1974). 
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Figure 3.13. Conditional beta density function for proportion of larvae surviving and the 
effect of increasing the initial larval population 

This equation links the larval survival model to the adult population and oviposition model 

through equations (3.31)-(3.32). 

3.3.3.4 Summary of Egg Hatch and Larval Survival Model 

This section described the models of egg hatch and larval survival that, with the adult 

population and oviposition model, provide a complete model of the com rootworm life cycle. 

The model of egg hatch determines the percent of the previous season's eggs that hatch as a 

function of the soil temperature environment. As a result, egg hatch is stochastic since soil 

temperature is stochastic. The model of larval survival determines the proportion of larvae 

that survive to emerge as adults by incorporating the effect of larval population density into a 

conditional beta density function. As a result, larval survival is stochastic as well. 

3.4 Conclusion 

This chapter presented a detailed description of the stochastic weather generator and 

population model used for this study. The weather generator uses a Markov-exponential 

model for precipitation and a correlated residuals model for daily air temperatures, both 

adapted fi-om Richardson (1981). The soil temperature model uses a modified form of the 

000 larvae 

2500 larvae 
^V^1250 larvae 

500 larvae 
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model of Potter and Williams (1994). The required inputs for using the weather generator 

are the coefficients for the numerous Fourier series and the elements of the correlation 

matrices. Methods for estimating these fi-om daily weather data are described and the values 

used for Brookings, SD and Boone, lA are reported. 

The com rootworm population model is stochastic primarily because the weather 

variables that drive the com rootworm life cycle models are stochastic. The multiple cohort 

model of adult population dynamics and oviposition was adapted from Naranjo and Sawyer 

(1989a), while the temperature dependent model of egg hatch was adapted firom Woodson et 

al. (1996) and Woodson and Ellsbury (1994). The density dependent model of larval 

survival was developed from experimental data provided by Walt Riedell at the Northern 

Grains Insect Research Laboratory in Brookings, SD (Riedell et al. 1996). Required inputs 

for using the population model are the various daily weather data obtained from the weather 

generator, as well as all the parameter values given in the model description. In addition, the 

Julian day for the plant day and the day of peak flower are required. 

Because the model is complex and time consuming to run, a simplification of the 

stochastics was necessary for performing the economic analysis. The next chapter describes 

this simplification as well as the estimation of stochastic damage functions. 
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CHAPTER 4: SIMPLIFIED CORN ROOTWORM POPUALTION MODEL AND 
STOCHASTIC MODEL OF ROOT RATING, LODGING, AND YIELD LOSS 

4.1 Introduction 

This chapter describes the estimation of several probability density functions for use 

in the subsequent Monte Carlo based economic analysis. The first section presents the 

estimation of three density fimctions that replace the stochastic dynamic com rootworm 

population model. The next section presents the estimation of density fimctions for the root 

rating, lodging, and yield losses resulting from com rootworm larval damage. 

4.2 Simplified Stochastic Dynamic Corn Rootworm Population Model 

4.2.1 Introduction 

The stochastic com rootworm population model presented in the previous chapter is 

difficult to use in a Monte Carlo based analysis, primarily because of the time needed to 

conduct several thousand simulations for each parameterization of the model. To simplify 

the model, simulations were conducted for a wide range of parameterizations and the results 

were used to estimate three density functions that describe the essential population dynamics. 

The simplified model focuses on the population at three stages—the total egg population at 

the end of the season, the initial larval population the following spring, and the maximum 

adult population the following summer. The total egg population at the end of the season is 

the total oviposition over the summer, the initial larval population is used to determine yield 

loss resulting from com rootworm damage, and the maximum adult population is used to 

make insecticide application decisions the following spring as part of IPM. Figure 4.1 

graphically illustrates how the simplified model proceeds. Each oval represents the total 

population of the specified type and the arrows between ovals represent the density functions 
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Figure 4.1. Illustration summarizing the simplified stochastic dynamic com rootworm 
population model 

describing the stochastic relationship between the populations. These density functions 

preserve the essentials of the more complex population model, yet can be integrated easily 

into a Monte Carlo analysis. What follows is a description of the simulation runs used to 

generate the data for density function estimation, followed by presentation of the estimation 

results for each density function. 

4.2.2 Corn Rootworm Population Model Simulations 

To generate sufficient data to accurately estimate the density functions describing the 

uncertainty of the population model, several thousand simulation runs were conducted. In 

general, all parameter values reported in chapter 3 were used for the weather generator and 

com rootworm population model. The only inputs that were varied for simulations were the 

plant day and day of peak flower for com. 

The range of typical plant days for Brookings, SD is later than in Boone, lA. For 

Boone, earliest plantings occur in mid-April and most are completed by mid-May, while 

planting is about a week later in Brookings (Famham 1997). For the simulations conducted 
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for Boone, the earliest plant day was April 15 and the latest was May 13 (Julian days 105 and 

133 respectively). For Brookings, the earliest plant day was April 23 and the latest was May 

21 (Julian days 113 and 141 respectively). The day of peak flower for com depends on the 

variety planted, the plant day, and the weather occurring after planting and is thus difficult to 

predict at plant. For the simulations conducted for Boone, the day of peak flowering ranges 

from July 4 to August 4 (Julian days 185 and 216 respectively), while for Brookings the 

range is July 20 to August 20 (Julian days 201 and 232 respectively). These ranges were 

developed from data reported by Naranjo and Sawyer (1989b), Spike and Tollefson (1989), 

and Ritchie and Hanway (1989). 

In the sensitivity analysis of their model of adult com rootworm population dynamics 

and oviposition, Naranjo and Sawyer (1989b) noted that model predictions were especially 

sensitive to day of peak flower, more so than to the plant day. As a result, the plant day was 

varied in four-day increments, while the day of peak flower was varied in one-day 

increments for each plant day. Varieties requiring more developmental time to flower yield 

more than varieties that require less time, but these higher yielding varieties must be planted 

earlier, or the com will not fiilly mature before the first killing frost. Thus farmers who are 

able to plant early generally plant varieties requiring more developmental time, while those 

who plant later plant varieties requiring less developmental time. However, early planted 

com still generally flowers before com planted later, even though the com planted later 

requires less developmental time. Taking this into account, simulations with early planted 

com used only early days for the day of peak flower, and simulations with late planted com 

used only late days for the day of peak flower. Table 4.1 summarizes the resulting 160 plant 
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Table 4.1. Plant day/day of peak flower combinations for which population model 
simulations were conducted 

Boone, lA Brookings, SD 
Plant Day Peak Flower Range Combinations Peak Flower Range Combinations 

105 185 to 200 16 - -

109 185to200 16 - -

113 185 to 208 24 201 to 216 16 
117 185 to 208 24 201 to 216 16 
121 193 to 216 24 201 to 224 24 
125 193 to 216 24 201 to 224 24 
129 201 to 216 16 209 to 232 24 
133 201 to 216 16 209 to 232 24 
137 - - 217 to 232 16 
141 - - 217 to 232 16 

day and peak flower day combinations for which simulations were conducted for each 

location. 

Simulations were conducted for all 160 plant day/peak flower day combinations 

summarized in Table 4.1, assuming no soil insecticides were used. The initial number of 

e g g s  ( )  w a s  s e t  a t  1 O O O  f o r  t h e  f i r s t  y e a r .  T h e  o v i p o s i t i o n  g e n e r a t e d  f o r  e a c h  s u b s e q u e n t  

year was then passed to the next year as the value for , creating a complete life cycle 

model. To obtain data for the population response to a wide variety of weather conditions, 

100 years of weather were used for each plant day/peak flower day combination. With 160 

plant day/peak flower day combinations and 100 years of weather, a total of 16,000 annual 

observations were generated for total oviposition, the initial larval population, and the 

maximum adult population. These data enable estimation of density functions for total 

oviposition, the initial larval population, and the maximum adult population when soil 
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insecticides are not used. The impact of soil insecticides on population dynamics is included 

in the Monte Carlo analysis described in chapter 5. 

4.2.3 Estimation of Corn Rootworm Population Density Functions 

4.2.3.1 Percent Egg Hatch Density Function 

Simulation results were used to estimate the unconditional density fiinction for the 

proportion of eggs that hatch. Upon examining the histograms for both Brookings and 

Boone (Figure 4.2). the censoring of the data was apparent, especially for Boone. To prevent 

excessive hatch in unusually mild winters in the complex model, the percent of eggs that 

hatch was censored at 85%, the approximate maximum observed by Woodson and Ellsbury 

(1994) in laboratory experiments. From the data histograms, this upper limit was not 
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Figure 4.2. Histograms of uncensored hatch data from simulations for Brookings, SD (top) 
and Boone, lA (bottom) 
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particularly binding for Brookings, but greatly so for Boone. This occurs because the winters 

are relatively more mild in Boone compared to those in Brookings. See Table 4.2 for a 

summary of the censoring and sample means and standard deviations. 

Data that have been censored from above can be modeled as follows: 

[ c  \ i  h  > c  

where h is the observed hatch, h* is the underlying latent variable that determines the value of 

h, and c is the value at which h is censored (0.85). To estimate the density function of h, the 

density function of h* is needed. Examining the histograms, it seems reasonable to assume 

that h' follows the normal distribution with a mean /uh and variance al. 

To estimate the parameters lUh and o),, a method of moments (MOM) estimator was 

developed. Following Greene (1997) Theorem 20.3: If h* ~ N(//;„ al) and h is determined 

according to equation (4.1). then: 

E[h] = c(l -cD(a))+cD(a)(//^ -a^A(a))  (4.2) 

V[h] = a;cp(a)[(l - J(a))+ {a -  A(ar))-(l - cD(ar))] (4.3) 

Table 4.2. Sample statistics and parameter estimates for egg hatch density function 

Sample Statistic or Parameter Brookings, SP Boone, lA 

Censored Observations 
Sample Mean 
Sample Standard Deviation 

MOM estimate of ///, 

MOM estimate of ah 
Pr(h' < 0.0) 
Pr(h* > 0.85) 

47 
0.52783 
0.12765 
0.52808 

0.12836 

0.00002 
0.00607 

7,651 
0.80939 
0.05766 

0.84562 

0.09621 

0.00000 
0.48184 
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E and V are the expectation and variance operators respectively, O and <j) are the standard 

normal cumulative distribution and density functions respectively, and a = 

A ( a )  = - ^ ( a )  / ,  and S ( a )  =  A ( a ) { A ( a )  -  a ) .  The MOM simply equates £[/j] and V[h] 

to their sample analogues, the sample mean and variance, and solves the simultaneous 

equations for fu and cr. The sample statistics and the resulting MOM estimators are reported 

in Table 4.2. 

The estimated parameters /jh and at, are for the normal density function describing the 

distribution of /i*. To determine h for a year simply requires a draw from this normal density, 

then censoring it at c = 0.85 (and at zero as well). The probabilities of censoring are reported 

in Table 4.2 for both estimates of /Uh and o>,. The model of egg hatch described in the 

previous chapter required daily output from the stochastic weather generator, a 

computationally intensive process. This egg hatch density function replaces this process with 

a single draw from a normal density function, thus simplifying this component of the 

stochastic population model and allowing easy integration into a Monte Carlo analysis. 

4.2.3.2 Maximum Adult Population Conditional Density Function 

Simulation results were used to estimate a density function for the maximum adult 

p o p u l a t i o n  ( )  cond i t i o n a l  o n  t h e  i n i t i a l  l a r v a l  p o p u l a t i o n  ( p ' - " " " ' )  a n d  t h e  p l a n t  d a y  

{ J ) .  S i n c e  t h e  m a x i m u m  a d u l t  p o p u l a t i o n  m u s t  b e  p o s i t i v e  a n d  h a s  n o  t h e o r e t i c a l  u p p e r  

bound, density fimctions such as the gamma or the log-normal seem appropriate. The 

gamma density was chosen and its parameters were estimated as functions of the plant day 

and the initial larval population. Various flmctions were estimated and evaluated for 
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statistical significance and the following model for the conditional gamma density function 

was chosen: 

( pAilulls>.g-\ pAdulls ! 2\ 
I  J Plant pLarvae^^ _  v *  A f o r  /  Max ' 

?FV{D) 

0 = 00+ ONJ"""' + + e,, (4.5) 

A = (P^""")- (4.6) 

Maximum likelihood estimates of the parameters and their standard errors are reported in 

Table 4.3. Figures 4.3 and 4.4 illustrate the conditional densities for Brookings and Boone 

and the effect of changing the plant day and the initial larval population. The density 

functions indicate that for equivalent conditions, the maximum adult population is likely to 

be higher in Boone. This occurs because of the warmer climate in Boone is more conducive 

to com rootworm growth and development. 

Table 4.3. Parameter estimates for maximum adult population density flmction 

Brookings, SD Boone, lA 
Parameter" Estimate Standard Error'' Estimate Standard Error'' 

9O -1.838 x 10" 2.720 X 10" 5.713 X 10" 2.955 X 10" 

9JI 2.537X 10-- 2.194 X 10"^ -3.391 X 10-- 2.552 X 10"^ 

OU -1.093 X 10"^ 2.667 X 10-^ 3.074 X 10-^ 4.511 X 10-® 

OU 5.047 X 10-^ 2.968 X lO'"' -3.738 X lO-"' 4.888 X 10-^ 

-2.629 X 10"' 6.054 X 10"^ -1.366 X 10' 5.441 X 10-' 

^JT 1.758 X 10*^ 5.149 X 10"^ 1.407 X 10"' 5.121 X 10"^ 
2.871 X 10-^ 3.986 X lO"' 8.033 X 10-^ 1.503 X 10"* 

^L2 -9.647 X 10-^ 5.307 X 10*' -9.325 X lO""' 2.955 X 10-® 

See equations (4.4) - (4.6) for meaning and definition of parameters. 
Computed according to the method of Bemdt et al. (1974). 
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Figure 4.3. Effect of increasing plant day on the maximum adult population density flinction 
for Brookings (left) and Boone (right), with 100 and 500 initial larvae respectively 
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Figure 4.4. Effect of the initial larval population on the maximum adult population density 
function for Brookings (left) and Boone (right), for a May 7 and April 29 plant day 
respectively 

As the plant day increases, the mean and variance of the maximum adult population 

increases in both locations. When com is planted early, com rootworm do not do 

well—adults are more likely to emerge as the proportion of com plants flowering decreases 

and less food is available. With later plant dates, com rootworm larvae are more likely to 

coordinate their emergence with peak com flowering, so adult mortality is on average 

reduced and the mean observed maximum adult population increases. In years when weather 
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events are particularly bad for com rootworm, the maximum adult population is low for an 

equivalent initial larval population, regardless of the plant day. However, in years with good 

weather, com rootworm emerging in fields of later planted com find a better food supply and 

the maximum adult population is higher. As a result the variance must increase, since the 

probability of low adult populations remains nearly unchanged, but the probability of high 

adult populations increases. 

Figure 4.4 illustrates effect changing the initial larval population has on the density 

for the maximum adult population for Brookings and Boone. Again the mean and the 

variance increase in both locations as the initial larval population increases. Intuitively, as 

the initial number of larvae increases, on average more adults emerge and the mean of the 

maximum number of adults observed increases. The variance increases as well, because in 

years with bad weather, adult populations are low regardless of the initial number of larvae, 

but in years with good weather, fields with more larvae have higher adult populations. 

4.2.3.3 Oviposit ion Conditional Density Function 

Simulation results were used to estimate a density function for the total armual 

o v i p o s i t i o n  ( )  con d i t i o n a l  o n  t h e  m a x i m u m  a d u l t  p o p u l a t i o n  ( )  ^nd  t h e  p l a n t  d a y  

^ J Plant y Since oviposition must be positive and has no theoretical upper bound, density 

functions such as the gamma or the log-normal are appropriate. Again the gamma density 

function was chosen and its parameters were estimated as functions of the maximum adult 

population and the plant day. Various flmctions were estimated and evaluated for statistical 

significance and the following model for the conditional gamma density fimction was 

chosen: 
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pEopi I p Adults J Plant ^ _ (^To^) ^^p{~ ^Toml ^ ̂  

0 + Oj.sj'''-"")- + (4.8) 

A = /I, + Xj.j''"- + Xj,{r"-f + (4.9) 

Maximum likelihood estimates of the parameters and their standard errors are reported in 

Table 4.4. Figures 4.5 and 4.6 illustrate the conditional densities for Brookings and Boone 

and the effect of changing the plant day and the maximum adult population. Boone has a 

noticeably larger mean and variance of oviposition, because its relatively warmer weather is 

more conducive to com rootwomi growth. 

The mean and variance of oviposition increase in both locations as the plant day 

increases. As previously discussed, when com is planted early, com rootworm adults are less 

able to coordinate their emergence with the period of com flowering, so less food is 

available. Thus mortality is higher, fewer females survive, and mean oviposition is reduced. 

Table 4.4. Parameter estimates for conditional oviposition density function 

Brookings, SD Boone, lA 
Parameter" Estimate Standard Error'' Estimate Standard Error'' 

1.829 x 10' 7.166 x 10" 4.298x 10' 1.519X 10' 
9j\ -2.695 x 10'' 1.142 x 10"' -7.094 x 10-' 2.576 x 10-' 

eji 1.017 x 10-^ 4.536 x 10"* 2.951 x 10"^ 1.088 x 10"^ 

9A\ 2.590 x 10-' 2.670 x 10"^ 2.278 x 10-' 3.464 x 10"^ 

Ao -9.005x 10- 1.208 x 10^ -5.427x 10- 1.936 x 10^ 
Xj\  1.310X 10 '  1.910 x 10" 7.932 x 10' 3.291 x 10° 

Xji  -4.233 x 10-- 7.527 x 10*^ -1.779 x 10-^ 1.394 x 10-^ 

XA\ 6.097 x 10-' 1.863 x 10*- 4.457 x IQ-' 1.718 x 10-^ 
See equations (4.7) — (4.9) for meaning and definition of parameters. 

'' Computed according to the method of Beradt et al. (1974). 
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Figure 4.5. Effect of increasing the plant day on the conditional oviposition density function 
for Brookings (left) and Boone (right), with 4.4 and 23 adults per square meter respectively 
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Figure 4.6. Effect of increasing the maximum adult population on the conditional 
oviposition density function for Brookings (left) and Boone (right), for a May 7 and April 29 
plant day respectively 

In years with bad weather, few eggs are laid regardless of the plant day, but in good years, 

more eggs are likely to be laid in later planted fields. As a result, the variance must increase. 

The mean and variance of oviposition also increase as the maximum adult population 

increases. The increase of the mean is intuitive—more adults imply that on average more 

eggs are likely to be laid. However, this increase in the mean is associated with an increase 
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in the variance, indicating that other factors besides the size of the adult population become 

more important determinants of the total oviposition. 

4.3 Root Rating, Lodging, and Yield Loss Density Functions 

4.3.1 Introduction 

This section reports parameter estimates for conditional density functions describing 

root rating, lodging, and the associated yield loss. The experimental data used to estimate 

these parameters were obtained from Walt Riedell at the USDA-ARS Northern Grain Insect 

Research Laboratory in Brookings, SD. For three years (1990-1992), field plots were 

artificially infested with experimentally controlled initial larval populations at four levels (0, 

1200. 2400, and 4800 larvae per meter of row). Among the data collected were the root 

rating (on the 1 -9 scale), percent of stand lodged, adults surviving to emergence, and yield. 

Average yields for control plots ranged from 99.1% to 93.7% of NASS county average yields 

reported for Brookings county each year. See Riedell et al. (1996) for a complete description 

of the e.xperiment and summary of results. 

4.3.2 Root Rating Conditional Density Function 

4.3.2.1 Conditional MOM Parameter Estimates 

As measures of com rootworm larval feeding damage, root ratings are highly 

dependent on the initial larval population. However, this relationship is far from 

deterministic, since other factors influence the root rating. Conditional histograms showed 

that the density was both unimodal and J shaped, depending on the initial larval population. 

Furthermore, by definition a root rating must range between 1 and 9. The beta density was 

chosen as the underlying density function because it is sufficiently flexible and has lower and 

upper limits. However, the method of maximum likelihood could not be used since the 
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likelihood function is not concave when the beta density is U or J shaped (Nelson and 

Preckel 1989). The method of moments (MOM) estimator was used (Evans et al. 1993), 

which estimates the parameters of the beta density as fimctions of the sample mean and 

variance. To capture the effect of the initial larval population, the mean and variance were 

modeled as fimctions of this population. What follows is a description of the conditional 

model for the mean and variance, then the MOM estimation process. 

The observed root ratings were normalized to a 0-1 scale, then the sample mean and 

variance of this normalized root rating were calculated for each of the four initial larval 

populations. There were 54 observations in each treatment, for a total of 216 observations. 

Figure 4.7 plots the results against the initial larval population. A negative exponential 

model was chosen for the conditional mean, since it asymptotically approaches the maximum 

of one and requires only one parameter. An ordinary least squares (OLS) criterion was used 

to estimate the following model: 

= 1 - exp(- ) (4.10) 

where rriR is the observed root rating, is the initial larval population, and vis the 

estimated parameter. The OLS parameter estimate for vis 4.987 x 10"* and the resulting fit is 

illustrated in Figure 4.7. 

A quadratic spline technique was used to smooth the conditional variance ( ) and 

preserve its rapid rise and gradual decline. Figure 4.7 illustrates the resulting fit and Table 

4.5 reports the coefficients. Specifically, three quadratic equations were fit to the data points 

to generate the following model: 
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Figure 4.7. Observed and fitted mean and standard deviation of normalized root ratings 
conditional on the initial larval population 

Table 4.5. Quadratic spline coefficients for equation (4.11) 

Coefficient Value Coelficient Value Coefficient Value 

a\ 0.00021 b\ 7.35 X 10-' C\  -3.00 X 10-" 
02 0.09433 bi -4.50 X 10"^ Cz 6.78 X 10"' 

^3 0.04616 b. -1.08 X 10"^ C3 9.03 X lO*'" 
aA 0.01495 
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a, + if 0 < P'^"" < 1800 

a, + b.P'^"'" + c,{p'^""')- if 1800 < P'^"'^ < 2400 

+ byP'^""' + c^iP'^""')- if 2400 < P'^""' <4800 

I, if 4800 

These functions determine the conditional mean and variance of the normalized root 

rating. TTie MOM estimators of the parameters of the beta density function (or and co) are 

functions of this conditional mean and variance and thus also depend on the initial larval 

population. The conditional beta density function of the normalized root rating— 

b{R I p ' " " " ' )—and the MOM estimators of a and co are summemzed by the following 

equations: 

biR I P '""" ' )  = ——^1——r(g + oj)  J 2 )  

a = m^ 
/I \ ^ 

r(a)r(£y) 

(4.13) 

= (!-/««) (4.14) 

Figure 4.8 illustrates the resulting density function and the effect of increasing the initial 

larval population. Clearly as the larval population increases, the density function shifts right 

and switches from an inverse J shape, to a unimodal shape, to a J shape, which is consistent 

with the conditional histograms. 

43.2.2 Derivation of Insecticide Efficacy 

The conditional mean function of equation (4.10) was used in conjunction with 

reported field data to derive an estimate of the efficacy of com rootworm soil insecticides for 

use in the Monte Carlo based analysis of IPM and IPM insurance described in chapter 5. 
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Figure 4.8. Effect of increasing the initial larval population on the conditional beta density-
function for root rating 

A pesticide's efficacy is the percent of the pest population which it kills. Iowa State 

University Department of Entomology has been conducting extensive and long-term 

evaluation of com insecticides. For untreated plots through out the state. Rice (1997) 

reported a five year average root rating of 4.55 on the 1-6 scale. Using Oleson's (1998) 

conversion chart, this is a 7.5 on the 1-9 scale. Inverting equation (4.10), this implies an 

initial larval population of 1400. Tollefson (1998) reports root ratings for field evaluations of 
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several soil insecticides. Good control under high com root worm pressure typically results 

in a root rating of 2 on the 1-6 scale. Again using Oleson's conversion chart, this is a 3-4 on 

the 1-9 scale. Inverting equation (4.10) for root ratings of 3.0, 3.5 and 4.0 gives initial larval 

populations of 240, 390, and 480 respectively. These imply efficacies of 83%. 72% and 66% 

respectively. The average of these three is 74%, which was rounded to 75% and was used in 

all simulations for the efficacy of soil insecticides. 

4.3.3 Lodging Conditional Density Function 

The data obtained from Walt Riedell (Riedell et al. 1996) were also used to estimate a 

density function of lodging conditional on the initial larval population. Lodging is reported 

as the percent of the com plants that are lodged, and as such is limited to the range 0%-100%. 

Originally, a beta density function was assumed and a conditional MOM estimation 

procedure was used just as for the root rating density fimction. However, this resulted in U 

shaped density functions that implied positive probabilities for very low lodging when larval 

populations were relatively high. This is counterintuitive and had no support in the data. An 

alternative is to assume that the data are censored observations of an underlying conditional 

density. Data that are censored both from above and below can be modeled as follows: 

1 = 
if ^ c, 

l l  i fc^<z, '<cy (4.15)  

c„ if II > c„ 

where L is the observed lodging and C is the underlying latent variable that determines Z, 

and cl and cy are the lower and upper values at which L is censored. Here c/, = 0 and cu = 

100. 
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To estimate the density of L, the density of L' is needed. Since the data were 

unimodal at moderate larval populations, a normal density was assumed. Furthermore, since 

observed lodging depends on the initial larval population, the parameters of the normal 

density function of L* were modeled as functions of this population. This implies estimating 

a doubly censored Tobit model with heteroscedasticity. The log-likelihood function and the 

conditional equations for m and at, the parameters of the normal density of L\ are: 

lnz:(l I^In Ci.  -Ml  CD 

r  /  
\-<t> + ^In 

/.SC, V 

a 

Cv -Ml.  

C£<Z.<Cf 
+ ^  -0.5 ln(2;r)  +  ln(£r ,^)  +  

V. J) 

(4.16) 

(4.17) 

<7, = 5o + (4.18) 

Table 4.6 reports the maximum likelihood estimates for the parameters and Figure 4.9 

illustrates the resulting conditional density function and the effect of increasing the initial 

larval population. As expected, the density fimction shifts to the right as the larval 

population increases, so that the probability lodging increases. 

Table 4.6. Parameter estimates for censored normal density function for 
lodging conditional on initial larval population 

Parameter" Estimate Standard Error" 
mo -2.665 X 10' 6.594 X 10" 
mi 2.494x10"- 2.251 X 10*^ 

So 3.362 X 10' 4.960 X 10° 
S\ 2.177 X 10"^ 2.022 X 10-^ 

'' Computed according to the method of Bemdt et al. (1974). 
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Figure 4.9. Effect of increasing the initial larval population on the censored normal density 
function for lodging, where the probability of left censoring is 0.66, 0.20, and 0.02 and the 
probability of right censoring is 0.00, 0.04 and 0.44, for larvae of 500, 2400, and 4800 
respectively 

4.3.4 Yield Loss Conditional Density Function 

The data provided by Walt Riedell (Riedell et al. 1996) were used to estimate the 

proportion of yield loss conditional on the root rating and percent lodging. A higher root 

rating implies greater root damage and thus increased yield loss. Lodging also reduces 

yields/increases yield loss independent of root damage (Spike and Tollefson 1991). The 

average yield for control plots—plots with initial larval populations of zero—were used as 

estimates of the pest free yield (y^/) for each year. There were 18 control plot observations 

for each year. The proportion of yield loss {pioss) for all 216 experimental plots was 

calculated as follows: 

= (4.19) 
ypf  

where yobs is the observed yield and ypf is the pest free yield appropriate for the year. 



www.manaraa.com

132 

Because information on the root rating and/or lodging may be ignored or may not be 

available, three density functions were estimated: one conditional on root rating only, one 

conditional on lodging only, and one conditional on both root rating and lodging. A simple 

linear regression was used to estimate the proportion of yield loss as a ftmction of the 

observed root rating and percent lodging. Upon examining the residual plots, 

heteroscedasticity was apparent. As a result, a maximum likelihood model was specified 

with normal errors and a variance specification depending on the root rating and the percent 

lodging. The log-likelihood function and the general model for parameter dependence on the 

root rating and lodging are; 

To estimate the less informed models, niR and sr, or mi and Si, were restricted to zero as was 

appropriate. Equation (4.21) imposes the restriction that when the root rating is 1.0 and/or 

the lodging is 0%. that the expected yield loss is zero. Table 4.7 reports the maximum 

likelihood estimates and standard errors for all three models. Figures 4.10 and 4.11 illustrate 

the conditional densities and the effect of changing the root rating and lodging. Figure 4.10 

indicates that there is little difference in mean and variance for the less informed density 

functions as the conditioning variable changes from its minimum to its mezin to its maximum. 

In Figure 4.11 the left plot shows the effect of changing the root rating from its mean with 

lodging held at its mean of 35% and the right plot shows the effect of changing 

(4.20) 

/Up =m„(/?- l )  + w,Z (4.21) 

(4.22) 
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Table 4.7. Parameter estimates for the three proportion of yield loss density functions 
conditional on root rating and percent lodging 

Model Parameter" Estimate Standard Enor 
Without Lodging rriK 1.335 X 10-^ 1.035 X IQ-^ 

•So 4.913 X 10"^ 5.548 X 10'^ 
•SR 3.591 X 10"^ 1.047 X 10-^ 

Without Root Rating rriL 1.383 X 10"^ 1.317 X 10-^ 
So 5.390 X 10"^ 2.702 X 10-^ 
St 2.500 X lO"* 7.217 X 10-^ 

Lodging and Root Rating rriR 4.334 X 10'^ 1.518 X IQ-^ 
mt 1.006 X 10"^ 1.667 X 10"^ 
SQ 5.507 X 10'^ 6.142 X 10-^ 
SR -1.019 X 10"^ 1.730 X 10'^ 
SL 3.425 X 10"* 1.487 X lO"* 

See equations (4.20) - (4.22) for meaning and definition of parameters. 
'' Computed according to the method of Bemdt et al. (1974). 
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Figure 4.10. Effect of increasing root rating (/?) on the proportion of yield loss density 
function conditional only on root rating (left) and the effect of increasing lodging (L) on the 
proportion of yield loss density fimction conditional only on lodging (right) 
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Figure 4.11.  Effect  of  increasing the root  ra t ing {R)  with lodging fixed at 35% (left) and the 
effect of increasing lodging (Z) with the root rating fixed at 5 (right) on the proportion of 
yield loss density function conditional on both root rating and lodging 

lodging from its mean with the root rating held at its mean of 5. The plots reveal that lodging 

has a greater effect on the mean and variance of yield loss than the root rating. Both the 

mean and variance increase as lodging increases with a fixed root rating. However, the mean 

increases and the variance decreases as the root rating increases with a fixed lodging. 

4.4 Summary 

This chapter described the estimation of the parameters of several density functions 

for use in subsequent Monte Carlo based economic analysis. Using simulation data, three 

density functions were estimated to create a simplified stochastic dynamic com rootworm 

population model. The percent of eggs that hatch each year is a random draw from an 

unconditional censored normal density. The initial larval population each year is then 

obtained by converting this percentage to a proportion and multiplying by the previous year's 

total oviposition. The maximimi adult population realized from this initial larval population 

is then obtained as a random draw from a ganmia density flmction conditioned on this initial 

larval population and the plant day. The total oviposition for the year is then obtained as a 
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random draw from a gamma density function conditioned on this maximiun adult population 

and plant day. The initial larval population for the next year is then the product of the 

random proportion of eggs that hatch and the total oviposition for the previous year. This 

describes the steps of the stochastic dynamic population model summarized in Figure 4.1. 

Data provided by Walt Riedell were also used to estimate three density functions that 

describe the uncertainty inherent in using root ratings and observed percent lodging as 

measures of com rootworm population and yield losses from com rootworm damage. A beta 

density function conditional on the initial larval population describes the root rating 

uncertainty. Lodging uncertainty is described with a doubly censored normal density 

function conditional on the initial larval population. Lastly, a normal density with a mean 

and variance conditional on the root rating and percent lodging describes the proportion of 

yield lost due to com rootworm damage. 
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CHAPTER 5: EMPIRICAL ANALYSIS OF CORN ROOTWORM IPM INSURANCE 

5.1 Introduction 

Chapter 2 presented a general theoretical model that captured the essence of the 

problem faced by producers. However for relevant empirical analysis, a specific model is 

desired that accurately reflects a real problem producers face. Chapter 1 included a general 

overview of the com rootworm problem faced by com producers and a simple description of 

how 1PM insurance works. Chapters 3 and 4 developed a specific model of the stochastic 

production process and the impact of com rootworm. This chapter links this production 

model with a formal model of IPM insurance, which allows empirical estimation of the sign 

and magnitude of some of the theoretical effects of IPM and insurance on adoption incentives 

and optimal input use discussed in chapter 2. 

First model details and notation are presented. As an extension to a specific case, the 

simplicity of the general model is lost, but the core model remains the same as is illustrated 

in the model presentation. Next the Monte Carlo technique used for the empirical analysis is 

described along with the algorithms used for random number generation. Next empirical 

findings concerning the value of IPM to producers and the effect of IPM adoption on optimal 

insecticide use are presented, then the value of IPM insurance and its risk effect on optimal 

insecticide use. In general, the empirical findings indicate that IPM has sufficient value to 

producers to cover the cost of implementation and IPM greatly reduces optimal insecticide 

use. However, IPM insurance has little value to producers because the financial risk 

associated with IPM failure is not large. The majority of the value of IPM is captured by 

expected profit maximization and the risk sharing needs of even highly risk averse producers 

are small. 
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5.2 Model Specification 

5.2.1 General Model Overview 

The representative producer modeled here manages a homogeneous unit of land 

normalized to one acre, all devoted to continuous com production. The producer derives 

utility from the profit generated from this land and all other income and wealth is ignored. 

Producer profit is simply the product of price and yield, minus the costs of production. For 

simplicity, the price of com is fixed and the cost of production is the same for all production 

scenarios and so it is ignored. Two independent sources of randomness make yields 

stochastic in this model. First, the proportion of yield lost each year due to com rootworm 

damage is a function of the observed root rating and lodging, which depend stochastically on 

the initial larval population. The simplified stochastic dynamic com rootworm population 

model presented in chapter 4 determines the initial larval population each year. Second, even 

if no com rootworm are present, the pest free yield is stochastic as a result of other factors 

such as nutrient management, irrigation, weed control, and weather related events. The yield 

uncertainty due to all these factors is captured in the distribution function of pest free yields 

and the focus here is on stochastic losses due to com rootworm damage. 

The producer influences the distribution of stochastic losses due to com rootworm by 

the application of soil insecticides, which in this model is a discrete choice—the producer 

either does or does not apply a soil insecticide. This accurately reflects producer practices, 

since producers who do apply insecticides generally do so at the recommended rates. Some 

producers do obtain good control with applications of 75% or 50% of the recommended rate 

(Edwards et al. 1999), but this practice is not modeled here since it is not predominate. 

Despite the discrete nature of insecticide application, the input choice still remains a 
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continuous variable, since the variable of concern is how frequently soil insecticide is 

applied. The producer maximizes the expected utility of profit by choosing an economic 

injury level (EIL), which then determines how often soil insecticides are applied. If the 

previous summer's observed maximum adult population is above the EIL, then the producer 

applies insecticide. For the status quo case, the EIL is zero so that insecticides are always 

applied. The alternative of never applying insecticide implies an EIL of positive infinity, or 

some value sufficiently high that it is never exceeded. 

Table 5.1 summarizes the sequence of events for the three production options. For 

the status quo production technology, the producer simply applies soil insecticide each year 

at plant. For both IPM scenarios, the producer observes the maximum adult population each 

summer and uses this information to decide whether or not to apply a soil insecticide the next 

year at plant. If this observed maximum population is above the EIL, the producer applies 

insecticide at plant the following spring. For scenarios with IPM insurance, in years when 

the adult population does not exceed the EIL, the producer purchases actuarially fair 

insurance. If the observed root rating and/or lodging exceed the predetermined threshold, 

this insurance pays an indemnity equal to the expected loss. The profit specification for each 

production technology are reported in the next sub-section. The distribution functions for the 

root rating and lodging are conditioned on the initial larval population each year, so they 

depend on the com rootworm population model. Figure 5.1 graphically summarizes the com 

rootworm population model and how the insurance signals and yield loss are determined in 

the model. Ovals represent observed variables, while arrows represent the flow of stochastic 

linkages between variables through conditional density functions. 
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Table 5.1. Sequence of events for the three com rootworm production technologies 

Year Status Quo IPM without Insurance IPM with Insurance 
Previous Year 

Previous Year 

Previous Year 

Current Year 

Current Year 

Current Year 

Current Year 

Harvest Com and 
Determine Profit 

Plant Com, 
Always Applying 

Insecticide 

Harvest Com and 
Determine Profit 

Observe Maximum 
Adult Population 

Harvest Com and 
Determine Profit 

Plant Com, Applying 
Insecticide If Adult 
Population > EIL 

Harvest Com and 
Determine Profit 

Observe Maximum 
Adult Population 

Observe Root Rating 
and Lodging 

Harvest Com and 
Determine Profit 

Purchase IPM 
Insurance If Adult 
Population < EIL 

Plant Com, Applying 
Insecticide If Adult 
Population > EIL 

Observe Root Rating 
and Lodging 

Harvest Com and 
Determine Profit 

5.2.2 Profit Specifications and Producer Optimization Programs 

5.2.2.1 Status Quo Case 

For any particular year r, denote per acre producer profit for the status quo case as 

, which is determined as follows: 

' r f -p/ 'O-nJ-c  (5.1)  

The price of com is fixed atp = $2.35 per bushel and C = $12.00 is the cost of purchasing 

and applying insecticide. The stochastic pest free yield for any year t is denoted yj''^ and it is 

distributed according to the beta density function, with parameters a and co and upper and 

lower limits. The values of these parameters used for the Monte Carlo simulations for 

Brookings, SD and Boone, IA are reported in Table 5.2. These are the parameter values used 

for determining county Revenue Assurance (RA) crop insurance premiums for Brookings 
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Maximum Adult 
Population 

Oviposition^ 
N ^ Total Egg 

^ V Population 

Percenlmatch LarvaNSurvival 

/ Initial Larval 
Population 

Observed 
Root Rating 

Percent of 
Stand Lodged 

Proportion of 
Yield Lost 

Figure 5.1. Illustration summarizing the stochastic dynamic population model and derivation 
of root rating, lodging and yield loss from it 
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Table 5.2. Parameter values for beta density functions for pest free yield 

Brookings, SD Boone, lA 
Parameter Value Parameter Value 

a 2.77 a 3.26 

O) 1.24 CO 1.61 
Lower limit O.OO Lower limit 0.00 
Upper limit 194.10 Upper limit 212.00 

County. SD, and Boone County, lA. Irrigated com is used for Brookings, since typically 

irrigated com is planted as continuous com and regularly treated with soil insecticides. In 

Boone, dryland com is used since it predominates among com cropping systems. 

In equation (5.1), YL,, the stochastic proportion of yield lost in year t due to com 

rootworm damage, follows a normal distribution with a mean and standard error depending 

on the observed root rating and lodging as reported in chapter 4, section 4.3.4. The observed 

root rating and lodging for any year depend stochastically on the initial larval population as 

described in chapter 4, sections 4.3.2 and 4.3.3. Specifically, the root rating follows a beta 

distribution and lodging follows a censored normal distribution, both with their parameters 

depending on the initial larval population for the particular year. However, the initial larval 

population each year is determined by the simplified stochastic dynamic com rootworm 

population model presented in chapter 4, section 4.2. As a result the distribution fimction of 

YL, is a stochastic process derived from the com rootworm population model. The producer 

influences this stochastic process with insecticide applications. Each year an insecticide is 

applied, the initial larval population is reduced 75%, which is the insecticide efficacy derived 

in chapter 4, section 4.3.2.2. 
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Assuming that the distribution of yf" captures all uncertainty remaining when all 

other inputs are used optimally, then the producer does not have an optimization program to 

implement, because of the ex ante restriction that soil insecticide is applied each year. For 

the status quo case, the assumption is that it is optimal to apply soil insecticide each year, 

particularly when no information concerning adult populations has been collected the 

previous summer. The goal of the empirical analysis is to determine if this is actually 

optimal, or if collecting information as part of IPM is of value to producers. 

The focus here is on the uncertainty in producer returns each year due to com 

rootworm damage. As a result, in this evaluation the producer ignores the dynamics of the 

stochastic com rootworm damage process, in the sense that no discounting of future utilities 

is used. The producer acts as if each com rootworm life cycle is a random event in a purely 

stochastic process, and so maximizes the expected utility of profit, not the discounted stream 

of the expected utility of profit. Nevertheless, the com rootworm population model 

underlying this process is still maintained as a dynamic stochastic process. 

Certainty equivalent returns are used to monetarize producer welfare, which requires 

determining the expected value of the utility of profit for any year when profit follows the 

stochastic dynamic process defined by equation (5.1): 

where iV is the number of years. This expected utility is the long run average utility the 

producer obtains from this stochastic dynamic production process, assuming no discounting 

of future expected utilities. Because of the complex nature of the process, analytically 

-V-l 

(5.2) 
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determining the expected value is intractable. As a result, the Monte Carlo technique 

described in section 5.3 is used to estimate the expected value numerically. 

5.2.2.2 Integrated Pest Management Case 

For any particular year t, denote per acre profit for the 1PM scenario as , which 

is determined as follows: 

All  var iables  have the same defini t ions as  in  (5 .1)  except  for  D, ,  a  dummy variable  indicat ing 

if insecticide is applied in year t, which is determined as follows: 

where is the maximum adult population observed during the previous summer. Again, 

YL, is determined as a stochastic ftmction of the observed root rating and lodging in year r, 

which are stochastic functions of the initial larval population in year t. The stochastic 

dynamic population model determines the initial larval population each year and the 

distribution function of YLt is a stochastic process as in the status quo case. Again, the 

producer influences this stochastic process with insecticide applications that reduce the initial 

larval population by 75% in the year they are applied. However, applications do not 

necessarily occur each year, hence YL, depends on D„ which depends on the EIL the 

producer uses, and we write YL,{E1L). Lastly, in a manner analogous to the initial larval 

population, the stochastic dynamic population model determines the maximum adult 

population each year and as a result the distribution function of is a stochastic process. 

(EIL)  = pyr (l - YLXEIL))- D, (£/I)C (5.3) 

(5.4) 
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For the IPM case, the producer must choose the optimal EIL to use. Again in this 

evaluation, the producer ignores the dynamics of the process and instead focuses on the 

uncertainty in profit and how the EIL affects this uncertainty. No discounting is used, so the 

producer maximizes the expected utility of profit as a function of the EIL: 

where is defined in equation (5.3) and the stochastic process governing is as 

described in chapter 4 and this chapter. Because of the complex nature of the stochastic 

process, analytically deriving the first and second order conditions for this optimization 

program is intractable. As a result, the Monte Carlo technique described in section 5.3 is 

used to optimize (5.5) numerically. 

5.2.2.3 Integrated Pest Management with Insurance Case 

For any particular year t, denote per acre profit for the IPM scenario with green 

insurance as nf, which is determined as follows: 

Variables have the same definitions as in (5.3). The added terms are for the actuarially fair 

premium ) and the insurance indemnity /(/?,, L,, Rjj^ which only matter 

when no insecticide is applied {D,  = 0). RTH and LTH are the thresholds for the root rating and 

lodging respectively at which insurance indemnities begin to be paid, such that no indemnity 

is paid unless the observed root rating and/or lodging are greater than or equal to their 

respective thresholds. Intuitively, as the thresholds are reduced, the likelihood and 

magnitude of the indemnity increases, as does the premium. Again, Rt and L, are the 

(5.5) 

(£/Z)  = py'; ' - '  ( l  -  YL,  {EIL))-D,  {EIL)C 

-(1 - A{EIL))M{Rr^,Lr„)  + {\-DXEIL)) l{R, ,L„Rr„,L^)  
(5.6) 
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observed root rating and lodging in year t and are the signals used to pay indemnities, 

analogous to the insurance signal s in chapter 2. 

Because both the root rating and lodging are available as insurance signals, three 

different indemnity schedules are possible—one based on only the observed root rating, one 

based on only the observed lodging and one based on both the root rating and lodging. The 

performance of each signal is reported as part of the empirical evaluation of IPM insiuance in 

section 5.5. Each pays producers the value of the expected loss for the observed signal. The 

specific forms of the indemnity schedules are: 

f 0 if /?, < Rjf, 
/(/?,,/?.„) = „ ' (5.7a) 

f 0 if I, < L-n, 

ypy, if A — ^TH 

r 0 if /f, < RrH and L, < Z,™ 
I { R , , L , , R r H , L . r n ) = \  ,  T H  ,  T H  

[py,  -1) + m, L,  if R, > R^ or L,  > 

Parameter values are from Table 4.7 and denotes ma when mi = 0, while mu denotes mi 

when niR = 0. The actuarially fair premium for each schedule is the expected value of the 

respective indemnity. Again, analytically determining this expected value is intractable, so 

the Monte Carlo integration technique described in the next section is used to determine the 

fair premium numerically. 

The indemnity schedules in (5.7) do not require producers to pay a deductible. When 

the signal is below the threshold, producers on average sustain small losses not covered by 

the insurance, but once the signal threshold has been reached they have complete coverage 

and they receive indemnities equal to their expected losses. For example, if the realized root 
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rating is 4.0, but the root rating threshold is 5.0, the producer receives no indemnity, but on 

average has a yield loss. Using the coefficients in Table 4.7 for yield loss based only on root 

rating, the expected yield loss associated with a root rating of 4.0 is 4.0%. Including a 

deductible in the indemnity schedules reduces the actuarially fair premium and affects 

welfare gains associated with insurance coverage. Additional analysis not reported here 

indicated that the welfare gain associated with IPM insurance coverage is reduced by 

including a deductible. The results reported in this chapter do not include a deducible and so 

are biased in favor of IPM insurance. 

As for the IPM case, the producer must choose the optimal EIL to use. Again in this 

evaluation, the producer ignores the dynamics of the process and does not discoimt future 

utilities. Instead the producer focuses on the uncertainty in profit and how the EIL affects 

this uncertainty, and so maximizes the expected utility of profit as a function of the EIL: 

EU,, (5.8) 

where is defined in equation (5.6) and the stochastic process governing TC\'' is as 

described in chapter 4 and this chapter. Again the optimization problem is analytically 

intractable and the Monte Carlo technique described in section 5.3 is used to optimize (5.8) 

numerically. 

5.2.2.4 Similarity of the Corn Rootworm Model and the General Theoretical Model 

The production process for the com rootworm model has the same essential core as 

the more general stochastic production model developed in chapter 2. As a reminder, in that 

model the producer chooses the optimal level of the input x with a production function 

f(x, 9,s), where ^is a potentially observable stochastic input and fa random production 
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shock. Green insurance coverage required an actuarially fair premium of M(P) and paid 

indenmities I(s,P), where is an index of insurance coverage and 5 the insurance signal. 

In the com rootworm model, the EIL is similar to x in that as the EIL is increased, the 

use of the soil insecticide input decreases and vice versa. The analogy holds if x is defined as 

the negative (or inverse) of the EIL. Similarly, the proportion of yield saved from com 

rootworm damage, (l - YL,  {EIL)) , is analogous to f(x, 9, e), where x = - EIL, is 

analogous to 0, and £• is a random production shock not affected by x or correlated with To 

see this, note that the distribution function of YL, is normal with a mean and standard error 

that are linear function of the observed root rating {R,) and lodging {Li) in year t, as presented 

in chapter 4. section 4.3.4. This can be expressed as YL, = <^|(/?,,/,,) + , where 

and ^2 are linear fiinctions and 7 is a normal random variable with a mean of zero and a 

variance of one. The root rating and lodging depend stochastically on the EIL and , 

which are analogous to x and 9, and 7 is analogous to ^if £-15 defined as - 7. Lastly, the 

fixed priceis a multiplicative constant that has no effect and the pest free yield y'^'' is an 

additional source of uncertainty specific to the com rootworm model that does not change the 

qualitative results. 

For com rootworm IPM insurance, either of the thresholds iJmand LTH are analogous 

to the level  of  coverage p in  chapter  2 ,  once p is  appropriately def ined.  For  example,  p=9-

RTH or P= 9/RTH imply that as the threshold is reduced, p increases, which preserves the 

maintained assumption that as Pincreases, the indemnity and the premium increase {lp> 0, 

Mp > 0). A similar definition of ̂  in terms of LJH is possible. 
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5.3 OvervieH' of the Monte Carlo Technique 

5.3.1 Monte Carlo Analysis 

In empirical studies, analytically evaluating integrals composed of nonlinear 

flmctions of random variables from distributions such as the gamma or beta can quickly 

become intractable. Monte Carlo methods are a way to nvimerically approximate the value of 

these integrals for the specific functions and parameterizations of the distributions. For the 

empirical analyses of com rootworm IPM, Monte Carlo integration is used to evaluate the 

expected utility of profit as a nonlinear function of several random variables. The essential 

idea is to draw the needed random deviates from the appropriately parameterized 

distributions, then to calculate the utility of profit for these specific realizations of the 

random deviates. Monte Carlo integration then notes that the average of all realizations is an 

unbiased and consistent estimator of the expected utility of profit (Greene 1997). Increasing 

the number of iterations reduces the variance of this estimator, so that a sufficiently large 

number of iterations reduces the error until it is insignificant. A grid search then identifies 

the EIL that maximizes the expected utility of profit as estimated via Monte Carlo 

integration. 

For the com rootworm 1PM model, this Monte Carlo technique is used for all 

empirical analyses. The CARA utility fionction, U{K) = 1 -exp(-/?^;r), and the profit 

specifications in (5.1), (5.3) and (5.6) are used as appropriate to evaluate (5.2) and to 

optimize (5.5) and (5.8). Values of RA were chosen according to the method of Babcock et 

al. (1993) so that the risk premium was 20% and 40% of the standard deviation of profit. 

Table 5.3 summarizes the values of RA used. The simplified stochastic dynamic population 

model and the derived damage model described in chapter 4 are used for all analyses. The 
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Table 5.3. Coefficient of absolute risk aversion values used for Monte Carlo simulations 

Risk Premium 
(as % standard Com rootworm All variables 

Location deviation of profit) risk only° stochastic^ 
Brookings 20% 0.0169 0.0042 
Brookings 40% 0.0371 0.0093 

Boone 20% 0.0186 0.0041 
Boone 40% 0.0408 0.0091 

" Pest free yield fixed at its mean in profit specification 
'' All variables stochastic in profit specifications 

population model is initialized with a population of 1,000 eggs and run for 100,000 years, for 

both Brookings, SD and Boone, lA. The grid search for the optimal EIL ranged between 0 

and 100 with a step size of 0.5. Sensitivity analysis is used to identify the effect of important 

parameters such as the plant day and the coefficient of risk aversion. Lastly, the sign and 

magnitude of various derivatives, such as for the wealth and risk effects, are numerically 

estimated by changing the value of the requisite parameter and noting the change. Other 

researchers have used a similar approach to analyze crop insurance and other government 

support programs and their effects on optimal input use (Ramaswami 1993, Babcock and 

Hennessy 1996, Hennessy, Babcock and Hayes 1996, Hennessy 1998). 

5.3.2 Random Number Generation in C-H-

The generation of reliable random numbers using computers is an essential part of 

Monte Carlo analysis, but is not a simple process. Press et al. (1992) expressly warn 

researchers from using random nimibers supplied by software systems, since the series of 

numbers eventually repeat themselves, which becomes a real concern when drawing 

numerous random variates as part of a Monte Carlo analysis. In the next sub-sections, the 
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algorithm for generating random variates from specific distributions used in the Monte Carlo 

analysis or modeling is described. 

Using a good generator for uniform random variates is especially important, since the 

generation of variates from other distributions typically requires uniform random variates. 

To generate uniform random variates, the algorithm provided by Press et al. (1992) for 

L'Ecuyer's long-period generator with a Bays-Durham shuffle is used. The algorithm is 

lengthy to present and more detailed than required for the purposes here. The interested 

reader should consult Press et al. 

Exponential random variates are generated by transforming uniform random variates 

following Evans et al. (1993): E { X )  = --[• ln(C/(0,l)), where E { X )  is an exponential random 
a 

variate with parameter A and t/(0,l) is a uniform random variate between zero and one. To 

obtain standard normal random variates, the method of transforming uniform random variates 

presented by Press et al. (1992) is used. Denote two independent unifomn random variates 

between zero and one as U\ and U2 respectively. Two independent standard normal random 

variates are obtained as follows: A^(0,1) = 2 ln(t/,) sin(2;rt/2) and 

iV(O.l) = cos(2;rt/|). However, the algorithm of Press et al. transforms the 

uniform random variates from the unit square to a point on the unit circle, then uses the simi 

of their squares and their angle as the uniform random variates, creating a faster algorithm 

since trigonometric functions are not used. To obtain non-standard normal random variates, 

standard normal random variates are transformed by multiplying by the desired standard 

deviation and adding the desired mean. 
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Following the algorithms presented by Cheng (1998) for Generators 1 and 2, two 

parameter gamma random variates are generated using the acceptance-rejection method. 

These algorithms are long and more detailed than necessary for the purposes here. The 

interested reader should consult Cheng. The method of Cheng is also used to obtain beta 

random variates by transforming two independent gamma random variates. Letg/ denote a 

gamma random variate with parameters k and a and gi a gamma random variate with 

parameters k and co. Then b = —— is a beta random variate with parameters a and o). 
Sx +^2 

5.4 Analysis of IPM 

5.4.1 Willingness to Pay for IPM 

5.4.1.1 Introduction 

Risk neutral producers maximize expected profit, so the difference between expected 

profit for two different production practices measures the willingness to pay to switch 

practices. Formally, if £;r, denotes the expected profit for production practice /, then the 

willingness to pay (WTP) to switch from practice i to j is WTPij = Enj - ETTI. Risk averse 

producers maximize expected utility and certainty equivalent returns (CER) convert the 

expected utility of stochastic profit to a monetary value. Thus the difference between CER 

for two different production practices measures the willingness to pay to switch practices. 

For the CARA utility function, if the expected utility for production scenario / is denoted 

then CER, = . Then the willingness to pay to switch from practice / to practice j is 
- ^ A  

WTPij = CERj - CER,. 
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The willingness to pay is used to measure the value of IPM to producers relative to 

the status quo practice of annually applying soil insecticides. To determine the adoption 

incentives provided by IPM, this willingness to pay is then compared to estimates of the cost 

of implementing IPM. In general the empirical results indicate that both risk neutral and risk 

averse producers have sufficient adoption incentives to more than cover the cost of 

implementing IPM. The empirical analysis also indicates that most of the value of com 

rootworm IPM is due to the concavity of profit in com rootworm uncertainty, not due to the 

concavity of utility in profit. As a result, risk averse producers have only slightly greater 

willingness to pay for IPM than risk neutral producers. What follows is first a presentation 

of empirical results for risk neutral producers, then the results for risk averse producers. 

5.4.1.2 Risk Neutral Producer's Willingness to Pay for IPM 

Figiu-e 5.2 graphically illustrate how expected profit changes as the EIL is increased 

from 0 to 100. The plot for Brookings is for com planted on May 14 (Julian day 134) and the 

plot for Boone is for com planted on April 29 (Julian day 119). The most striking difference 

between the curves is their shape. The curve for Brookings is much flatter around the 

optimal EIL than the curve for Boone. This implies that erroneously using an EIL that is 

slightly too high or too low has a lower cost in Brookings than in Boone. 

The status quo production practice of applying insecticide each year implies an EIL of 0, so 

that the intercept in each plot is the expected profit for the status quo practice. On the other 

hand, never applying insecticides implies an EIL of positive infinity and the expected profit 

at the EIL of 100 approximates this management practice. For Brookings this is the case 

exactly, but for Boone, the EIL of 100 still implies an insecticide application on average once 

every five years. For economic analysis, the difference between the expected profit at the 
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20 40 60 80 100 

Economic Injury Level 

Figure 5.2. Expected profit ($/ac) versus the economic injury level (adults/m^) for Brookings 
(top) and Boone (bottom) 

maximum and the left intercept for an EIL of 0 is the risk neutral producer's willingness to 

pay to switch from the status quo practice of always applying insecticide. This willingness to 

pay is substantial for both locations. On the other hand, the difference between the expected 

profit at the maximum and the expected profit for an EIL of 100 is the risk neutral producer's 

willingness to pay to switch from not managing com rootworm with soil insecticides to using 

IPM and soil insecticides. For Brookings this is insignificant, but substantial for Boone, as 

the shape of the curves indicates. 

At the expected profit maximizing point on each curve the expected per acre profit is 

$311.44 in Brookings and $326.52 in Boone, while the associated profits for the status quo 
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practice of annually applying insecticide are $301.37 and $319.10 respectively. (Note that 

these profit figures do not include typical costs of production such as machinery, harvest and 

input costs, and so are relatively high. These costs are assumed to be constant across com 

rootworm practices and so are ignored.) Thus relative to always applying soil insecticides, a 

risk neutral producer's per acre willingness to pay for com rootworm IPM is $10.07 in 

Brookings and $7.42 in Boone. Repeating this calculation for other plant days yields the data 

reported in Table 5.4, while Figure 5.3 graphically illustrate how the willingness to pay 

changes in both locations as the plant day is changed and the optimal EIL for each plant day 

is used. 

The value of IPM relative to the status quo practice of always applying insecticides is 

greatest when 1PM requires the least number of applications. Both practices generally 

achieve similar levels of com rootworm control, but IPM generates greater cost savings when 

it achieves this control with fewer applications, as is the case for Brookings relative to 

Boone. Thus the willingness to pay is greater in Brookings than in Boone. For both 

locations, the willingness to pay decreases as the plant day increases. The com rootworm 

population does better with later planted com because adults are better able to coordinate 

Table 5.4. Risk neutral producer's willingness to pay ($/ac) for 1PM relative to always 
applying insecticide in Brookings and Boone over a range of plant days 

Brookings 
Plant Day Willingness to Pay Plant Day 

Boone 
Willingness to Pay 

April 23 (113) 11.79 April 15(105) 10.17 
April 30(120) 11.52 April 22(112) 8.86 
May 7(127) 10.97 April 29(119) 7.44 
May 14(134) 10.08 May 6 (126) 5.82 
May 21 (141) 8.88 May 13 (133) 3.96 

Average 9.98 7.25 
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Figure 5.3. Risk neutral producer's willingness to pay ($/ac) relative to always applying 
insecticide versus plant day for Brookings (top) and Boone (bottom) 

their emergence with the period of peak com flowering, and emerge when their food supply 

is better. As a result, more adults survive to maturity and each surviving female lays more 

eggs. Thus the likelihood of observing adults greater than the EIL increases and IPM 

(correctly) recommends more insecticide applications than for earlier planted com. The data 

also show that, for the same plant date, the willingness to pay for 1PM is greater in Brookings 

than in Boone. This occurs because the generally warmer temperatures in Boone are more 

conducive to com rootworm growth, and as a result, IPM (correctly) recommends more 

frequent application of soil insecticides. 

The difference between the expected profit at an EIL of 0 and 100 gives the value to 

risk neutral producers of always using soil insecticide applications and never using them. 



www.manaraa.com

156 

Figure 5.2 indicates that for Brookings, producers prefer never applying insecticides to 

always doing so, and that the added value of IPM is relatively minor compared to never 

applying insecticide. Nevertheless, annual applications of soil insecticides are still common 

in the Brookings area, particularly for irrigated com. On the other hand, for Boone, noting 

that an EIL of 100 still implies approximately a 20% probability of applying an insecticide, 

always applying soil insecticide outperforms never applying insecticide. This occurs because 

the generally warmer climate in Boone is more conducive to com rootworm growth and 

economic losses are more likely. 

5.4.1.3 Risk Averse Producer's Willingness to Pay for IPM 

The primary result thus far is that risk neutral producers have substantial incentives to 

adopt IPM. However, the typical assumption wdth intuitive appeal is that producers have 

some aversion to risk. When producers are risk averse, certainty equivalent retums are the 

money metric that measures producer welfare, just as expected profit does for the risk neutral 

producer. Figure 5.4 graphically illustrates how certainty equivalent retums change as the 

EIL is increased from 0 to 100. Just as for expected profit, the plot for Brooidngs is for a 

May 14 (Julian day 134) plant date, while the plot for Boone is for an April 29 (Julian day 

119) plant date. Both plots are for a moderate level of risk aversion—a risk premiimi that is 

20% of the standard deviation of profit as reported in Table 5.3. Both curves are shifted 

downward by the amount of the risk premium, but have essentially the same shape as for 

expected profit in Figure 5.2, just shifted slightly to the right. The economic implications of 

this slight shift are discussed in the next sub-section on optimal input use. 

To determine how risk aversion affects the value of IPM, the willingness to pay to 

switch from the status quo practice to IPM is used. This willingness to pay is simply the 
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Figure 5.4. Moderately risk averse producer's certainty equivalent returns ($/ac) versus 
economic injury level (adults/in~) for Brookings (top) and Boone (bottom) 

difference between certainty equivalent returns for both cases. Table 5.5 reports this 

willingness to pay for moderate and high levels of risk aversion. Figure 5.5 illustrates how 

this willingness to pay changes in both locations as the plant day increases and the optimal 

EIL for each plant day is used. When compared to the willingness to pay of risk neutral 

producers (Table 5.4), these data indicate that accounting for risk aversion increases the 

value of IPM to producers, but not very much. In terms of Proposition 1 from chapter 2, this 

implies a slight increase in the incentive to adopt IPM when risk aversion is included in the 

analysis, while the cost of using IPM remains unchanged. 
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Table 5.5. Risk averse producer's Avillingness to pay ($/ac) for IPM relative to always 
applying insecticide in Brookings and Boone over a range of plant days 

Willingness to Pay Willingness to Pay 
Location Plant Day Moderately Risk Averse" Highly Risk Averse'' 
Brookings April 23 (113) 11.80 11.83 
Brookings April 30 (120) 11.55 11.61 
Brookings May 7 (127) 11.02 11.13 
Brookings May 14(134) 10.12 10.27 
Brookings May 21 (141) 8.93 9.07 

Average 10.02 10.16 

Boone April 15 (105) 10.28 10.49 
Boone April 22 (112) 9.00 9.21 
Boone April 29(119) 7.52 7.81 
Boone May 6(126) 5.91 6.13 
Boone May 13(133) 4.06 4.24 

Average 7.35 7.58 
With a 20% risk premium and all variables stochastic. See Table 5.3. 

^ With a 40% risk premium and all variables stochastic. See Table 5.3. 
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Figure 5.5. Moderately risk averse producer's willingness to pay ($/ac) versus plant day for 
Brookings (top) and Boone (bottom) 
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Table 5.4 reports a risk neutral producer's willingness to pay, while Table 5.5 reports 

a risk averse producer's willingness to pay. The ratio of the risk neutral willingness to pay to 

the risk averse willingness to pay is the proportion of the total willingness to pay that is due 

to risk neutrality. These proportions are converted to percentages and reported in Table 5.6 

for Brookings and Boone over a range of plant days. This disaggregation of the total 

willingness to pay is analogous to the analysis of Babcock and Shogren (1995) concerning 

the willingness to pay for information that eliminates nitrogen input uncertainty in com 

production. In their terminology, the proportion of the willingness to pay that is attributed 

solely to risk neutrality is the production premium, since it is due to the nonlinearity of the 

production function (and thus producer profit) in the stochastic inputs and does not depend 

on producer preferences. The percentage due to risk aversion is the risk aversion premium. 

Table 5.6. Disaggregation of total willingness to pay into the production premium and the 
risk aversion premium, expressed as a percentage of the total willingness to pay 

Moderately Risk Averse" Highly Risk Averse" 
Production Risk Aversion Production Risk Aversion 

Location Plant Day Premium Premium Premium Premium 
Brookings April 23 (113) 99.9 0.1 99.7 0.3 
Brookings April 30 (120) 99.7 0.3 99.2 0.8 
Brookings May 7(127) 99.5 0.5 98.6 1.4 
Brookings May 14(134) 99.6 0.4 98.1 1.9 
Brookings May 21 (141) 99.4 0.6 97.9 2.1 

Average 99.5 0.5 98.2 1.8 

Boone April 15 (105) 98.9 1.1 96.9 3.1 
Boone April 22(112) 98.4 1.6 96.2 3.8 
Boone April 29(119) 98.9 1.1 95.3 4.7 
Boone May 6 (126) 98.5 1.5 94.9 5.1 
Boone May 13 (133) 97.5 2.5 93.4 6.6 

Average 98.5 1.5 95.4 4.6 
With a 20% risk premium and all variables stochastic. See Table 5.3. 

'' With a 40% risk premium and all variables stochastic. See Table 5.3. 
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and is due to the nonlinearity of utility in stochastic profit. In their analysis, all uncertainty 

was eliminated by the information technology, while here IPM does not resolve all 

uncertainty. Later analysis removes all uncertainty, but this does not change the essential 

result found here—as the data in Table 5.6 indicate, the production premium accounts for the 

majority of the willingness to pay for IPM. The economic implications of this result for 1PM 

insurance are addressed in section 5.5. 

5.4.1.4 Cost of Implementing IPM 

The primary cost of IPM is scouting for insects during the appropriate time. 

Producers can do this themselves and Foster et al. (1986) estimate $0.44 per acre for Iowa to 

scout just com rootworm. However, most producers using IPM do not scout themselves, but 

typically hire crop consultants to do regular scouting throughout the season and then to 

provide various management recommendations, including insect management. The costs of 

this service vary, depending on the region and the specific services included in the contract. 

The typical range is from $5-$8 per acre, but this includes all services, not just com 

rootworm scouting. For example, Gerber et al. (1999) report a cost of $6.50 per acre in 

Indiana for hiring a full service crop consultant, which includes recommendations for tillage 

and rotations, nutrient management, weed control and management of pertinent insect 

species, including com rootworm. Thus $5 per acre is an estimate of the cost for a producer 

not currently using a crop consultant to hire a crop consulting service primarily for com 

rootworm IPM. This estimate is used for evaluating the adoption incentives provided by 

com rootworm IPM. 

Referring to Proposition 1 and Corollaries 1 and 2 in chapter 2, the producer has an 

incentive to adopt the BMP if the implementation costs do not exceed the value of the 
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technology to the producer. Using a cost of $5 per acre for hiring a crop consultant and the 

empirical results presented in Table 5.4 and Table 5.5, the benefits generally exceed the costs 

so that risk neutral and risk averse producers have an incentive to adopt IPM. Only for late 

planted com in Boone does the value of IPM fall below the cost of hiring a full service crop 

consultant. Producers who regularly plant their com late may find it optimal to always apply 

soil insecticides and not hire a crop consultant for com rootworm management 

recommendations, unless the value of the service in other areas of crop production are 

sufficient to warrant the cost. If the primary benefit expected is reduced costs for com 

rootworm control via IPM, hiring a consultant is not worth the cost for these producers. 

5.4.2 Impact of IPM on Optimal Insecticide Use 

5.4.2.1 Introduction 

Optimal insecticide use changes when producers adopt IPM. In chapter 2, section 

4.2.2, this change was referred to as the adoption effect. It was not possible to develop a 

formal proposition that identified conditions that determine the sign and or magnitude of this 

adoption effect, rather it remained an empirical issue. In this section the results of the 

empirical analysis of the adoption effect for com rootworm IPM are presented, first for a risk 

neutral producer, then for a risk averse producer. 

The data used to generate plots such as reported in Figures 5.2 and 5.4 allow 

determination of the optimal EIL—the EIL associated with the maximum expected profit or 

certainty equivalent returns is the optimal EIL for the specific parameters. As part of the 

Monte Carlo simulations, the frequency of insecticide application is calculated for each EIL, 

then this frequency is converted to a percent. For the status quo practice, the EIL is 0 and 

insecticide is applied 100% of the years. As the EIL increases from 0, the percent of years 
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that insecticide is applied decreases. This percent indicates of how the long run average rate 

of insecticide use for a producer adopting IPM with this EIL compares to the status quo 

practice. Alternatively, the measure indicates how the annual average rate of insecticide use 

in a region changes due to regional adoption of IPM. 

5.4.2.2 The Adoption Effect for Risk Neutral Producers 

Table 5.7 reports the optimal EIL and associated percent of years that soil insecticide is 

applied for risk neutral producers in each location over a range of plant days. The data 

indicate that adopting IPM reduces insecticide in both locations and for all plant days. The 

adoption effect for risk neutral producers is substantial, implying a reduction in the optimal 

application rate ranging from 50% to 100%, depending on the location and plant day. 

The optimal rate increases for later planted com because adults are better able to 

coordinate their emergence with the period of peak com flowering and emerge when their 

food supply is better. The overall population is greater, since more adults survive and each 

surviving female lays more eggs, so that more control is required to prevent economic losses. 

Table 5.7. Risk neutral producer's optimal EIL and insecticide application rate expressed 
as a percent of the status quo rate for Brookings and Boone for a range of plant days 

Brookings Boone 
Plant Day Optimal EIL" % Plant Day Optimal EIL % 
April 23 (113) 100.0 0.0 April 15 (105) 32.0 2.0 
April 30 (120) 100.0 O.O April 22(112) 24.5 10.2 
May 7 (127) 42.0 1.6 April 29(119) 19.0 21.7 
May 14(134) 26.0 7.7 May 6 (126) 16.5 34.4 
May 21 (141) 21.0 15.8 May 13 (133) 13.0 50.3 

Average 57.8 5.0 21.0 23.7 
An optimal EIL of 100 implies an EIL sufficiently high that soil insecticide is never 

applied. 
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The optimal application rate is also higher for Boone than for Brookings because the 

climate in Boone is generally more conducive to com rootworm growth, so that again more 

control is required to prevent economic losses. Indeed, the climate in Brookings is such that 

it is never optimal to apply insecticide on com that is regularly planted early, since the 

population pressure is never sufficient to warrant the cost of insecticide application. 

The typical EIL recommended for use by entomologists is one adult per plant. The 

EIL reported here are adults per square meter and must be converted to a per plant basis for 

comparison. Following Stamm et al. (1985), a typical plant density of 70,000 plants per 

hectare (28,330 plants per acre) implies that dividing adults per square meter by seven gives 

adults per plant. Thus, when converted to a per plant basis, the optimal economic injury 

levels reported in Table 5.8 range from three to positive infinity for Brookings and 

approximately two to five for Boone. Several explanations for the difference between these 

optimal EILs and the recommended EIL are possible. First, the population and damage 

models developed in chapters 3 and 4 may not be accurate. Alternatively, note that the 

population model used here is for the northern com rootworm only. However, the westem 

com rootworm also causes significant yield losses. If both species were included in the 

model with competition between them, the optimal EIL for the total number of com 

rootworm observed (northem plus westem) probably would be lower. Lastly, maybe the 

recommended EIL is not expected profit or utility maximizing. 

Foster et al. (1986, p. 304) note that the recommended EIL has been developed 

..based on many years of experience rather than experimental data." Indeed, Foster et al. 

use Bayesian analysis of field data from Iowa and find that the value of com rootworm 
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Table 5.8. Risk averse producer's optimal insecticide application rate expressed as an EIL 
and as a percentage of the status quo rate 

Moderately Risk Averse® Highly Risk Averse' 3 

Location Plant Day Optimal EIL*^ % Optimal EIL' % 
Brookings April 23(113) 100.0 0.0 100.0 0.0 
Brookings April 30(120) 100.0 0.0 100.0 0.0 
Brookings May 7 (127) 45.5 1.4 51.0 1.1 
Brookings May 14(134) 28.0 7.1 29.5 6.8 
Brookings May2i (141) 23.0 15.1 25.5 14.3 

Average 59.3 4.7 61.2 4.4 

Boone April 15(105) 34.0 1.7 34.5 1.6 
Boone April 22(112) 24.5 9.7 25.5 9.2 
Boone April 29(119) 21.0 20.3 23.0 18.9 
Boone May 6 (126) 18.0 32.9 19.5 31.3 
Boone May 13 (133) 13.5 49.5 15.0 47.7 

Average 22.2 22.8 23.5 21.7 
With a 20% risk premium and all variables stochastic. See Table 5.3. 

'' With a 40% risk premium and all variables stochastic. See Table 5.3. 
' An optimal EIL of 100 implies an EIL sufficiently high that soil insecticide is never 
applied. 

scouting information is zero, so that the recommended com rootworm management practice 

in Iowa is to always apply insecticide. Naranjo and Sawyer (1989b) use their simulation 

model developed from field data from New York to derive the optimal EIL and the impact of 

planting date, peak flower, and temperature. They do not report the actual EILs, but 

normalize them to the recommended EIL for a "typical" year and field. Their figures are 

difficult to read, but the optimal normalized EIL varies between approximately one fourth 

and five times the recommended EIL. Stamm et al. (1985) analyze field data fi*om Nebraska 

and find that using an EIL of 0.75 increases IPM prediction accuracy to greater than 90%. 

Thus it is difficult to find conclusive experimental and/or theoretical support for the 

recommended EIL and reconciling the differing results requires additional research. 
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Further analysis of the work of Stamm et al. and Foster et al. provides insight. First, 

borrow terminology from statistical decision theory to define type I and type II errors in the 

context of IPM. A type I error occurs when IPM recommends that no insecticide be applied, 

but in the ex post analysis, the realized yield loss is sufficiently high that insecticide should 

have been applied. A type II error occurs when 1PM recommends an insecticide application, 

but in the ex post analysis, the insecticide was unnecessary. In the analysis of Stamm et al., 

IPM prediction accuracy is measured only as the probability of a type I error and the 

probability of a type II error is ignored. Indeed, with an EIL of 1.0, they report a probability 

of 10.9% for a type I error, which is reduced to 3.6% with an EIL of 0.75. However, their 

data imply a 52% probability of a type II enor for an EIL of 1.0, which can only increase 

when the EIL is reduced. Similarly, the data of Foster et al. indicate no type 1 errors with an 

EIL of 1.0 using the 1-9 root rating scale, but a 34.3% probability of a type II enor. It seems 

possible that the recommended EIL has been developed "...based on many years of 

experience..." to greatly reduce the likelihood that 1PM commits a type I error, since such 

errors would be damaging to the reputation of IPM and reduce producer adoption. A 

producer can often identify when a type I error has occurred, since lodged com is easily 

noticed, as are rootworm feeding scars on com roots. However, a type II error is difficult to 

detect, unless the producer plants a test plot to determine if the insecticide application was 

warranted. 

The main point I wish to make is that the optimal economic injury levels identified 

with the model here are potentially different from the recommended EIL for two reasons. 

First they were identified in a different maimer than used to determine the recommended 
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EIL. Second, they were chosen with a different objective than seems to be the case for the 

recommended EIL. 

5.4.2.3 The Adoption Effect for Risk Averse Producers 

Table 5.8 reports the optimal EIL and associated percent of years that soil insecticide 

is applied for risk averse producers in each location, over a range of plant days and for two 

levels of risk aversion. Comparing these results with those in Table 5.7 for the risk neutral 

producer indicates that as risk aversion increases, the optimal insecticide application rate 

decreases. Thus, relative to risk neutral producers, risk averse producers do not find it 

optimal to increase insecticide applications to fiirther reduce the risk of lose from com 

rootworm. Rather risk averse producers prefer to increase the EIL to further reduce the risk 

of expenditures on urmecessary insecticide applications. Thus risk averse producers prefer to 

reduce the probability of type IIIPM errors, not type I. This preference is opposed to the 

apparent objective used to determine the recommended EIL. 

In a manner similar to the willingness to pay for IPM, the adoption effect on optimal 

input use can be disaggregated into a production effect and a risk aversion effect. In this 

context, the production effect is the reduction in optimal input use occurring due solely to die 

nonlinearity of the production function (and thus producer profit) in the stochastic factors, 

which does not depend on producer preferences. The risk aversion effect is the reduction in 

optimal input use occurring as a result of the nonlinearity of producer preferences in 

stochastic profit. The data are not reported, but as with the willingness to pay for IPM, the 

majority (> 95%) of the adoption effect is due to the production effect and not the risk 

aversion effect. 
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5.4.3 Optimal versus Uniform EIL 

The previous analysis of IPM assumed that producers used the optimal EIL that 

varied with the plant day and location. However, typically IPM uses a uniform EIL (e.g. one 

adult per plant), not an EIL that varies with the plant day and/or location. The simplicity of 

the uniform EIL is its primary advantage, since the crop consultant and/or producer does not 

have to worry about other complicating factors when deciding whether to apply insecticide. 

However, this simplicity has cost associated with it—producers must deviate from the 

optimal EIL and as a result incur welfare losses. In addition, application rates for soil 

insecticides are too high in some instances and too low in others, with the net effect on 

overall insecticide use indeterminate. What follows is an analysis that determines the welfare 

costs associated with non-optimal EILs and their effect on insecticide use. In general the 

results indicate that the cost associated with a constant uniform EIL for all plant days and 

locations is relatively small—on average less than thirty cents per acre—and that the 

application rate changes very little. 

The cost to risk neutral producers of using a uniform EIL for com rootworm can be 

determined here as the difference between expected profit with the optimal EIL and expected 

profit with the uniform EIL for each plant day. For risk averse producers, the cost is the 

difference between certainty equivalent retums with the optimal EIL and with the uniform 

EIL. The uniform EIL is varied fi"om 7 to 35 adults per square meter (1 to 5 adults per plant). 

Table 5.9 reports the cost to a risk neutral producer and Table 5.10 reports the cost for a 

highly risk averse producer. The costs for a moderately risk averse producer are 

approximately the average of the costs reported in Tables 5.9 and 5.10. 
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Table 5.9. Risk neutral producer's cost of using different uniform EILs in Brookings and 
Boone over a range of plant days 

Cost 
Location Plant Day EIL = 7 EIL = 14 EIL = 21 EIL = 28 EIL = 35 

Brookings April 23 (113) 0.36 0.07 0.02 0.01 0.00 
Brookings April 30(120) 0.78 0.23 0.09 0.04 0.01 
Brookings May 7 (127) 0.87 0.26 0.10 0.03 0.01 
Brookings May 14(134) 0.76 0.20 0.06 0.01 0.08 
Brookings May 21 (141) 0.61 0.09 0.00 0.11 0.20 

Average 0.68 0.17 0.05 0.04 0.06 

Boone April 15 (105) 1.73 0.40 0.12 0.03 0.02 
Boone April 22 (112) 2.02 0.37 0.04 0.03 0.22 
Boone April 29 (119) 1.83 0.21 0.03 0.30 0.75 
Boone May 6 (126) 1.29 0.08 0.19 0.79 1.63 
Boone May 13(133) 0.64 0.01 0.53 1.55 2.77 

Average 1.50 0.21 0.18 0.54 1.08 

Table 5.10. Highly risk averse^ producer's cost of using various uniform EILs for IPM in 
Brookings and Boone for a range of plant days 

Cost 
Location Plant Day EIL = 7 EIL= 14 EIL = 21 EIL = 28 EIL = 35 

Brookings April 23 (113) 0.37 0.07 0.02 0.01 O.OO 
Brookings April 30 (120) 0.86 0.25 0.12 0.04 0.02 
Brookings May 7 (127) 1.03 0.36 0.16 0.07 0.04 
Brookings May 14(134) 0.98 0.34 0.12 0.03 0.04 
Brookings May 21 (141) 0.80 0.22 0.05 0.09 0.09 

Average 0.81 0.25 0.09 0.05 0.04 

Boone April 15 (105) 1.97 0.53 0.18 0.05 0.01 
Boone April 22 (112) 2.36 0.56 0.07 0.00 0.09 
Boone April 29 (119) 2.25 0.43 0.08 0.19 0.50 
Boone May 6 (126) 1.59 0.20 0.12 0.54 1.19 
Boone May 13 (133) 0.87 0.02 0.24 1.07 2.04 

Average 1.81 0.35 0.14 0.37 0.77 
With a 40% risk premium and all variables stochastic. See Table 5.3. 
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Examining the data in Table 5.9 indicates that in Brookings the cost is relatively high 

for an EIL that is too low, but the cost is low and fairly unresponsive to an EIL that is too 

high. On the other hand, in Boone the cost is relatively more expensive overall and this cost 

increases noticeably in either direction from the optimal EIL. Examining Figure 5.2 explains 

graphically the data in Table 5.9. The relatively flat curve for Brookings around the 

maximum indicates a small loss for a non-optimal EIL, whereas the curve for Boone exhibits 

rapid declines in either direction around the maximum, so that the cost of a non-optimal EIL 

is higher. 

Intuitively, an EIL that is too low implies unnecessary insecticide applications, while 

an EIL that is too high implies missed opportunities to reduce losses by applying insecticide. 

Using previously defined terminology, an EIL that is too low implies an increased probability 

of a type II error and an EIL that is too high implies an increased probability of a type I error. 

In either location the observed adult population rises above an EIL that is too low sufficiently 

often that the unnecessary applications reduce the value of IPM. This happens more often in 

Boone, because the generally warmer conditions are more conducive to com rootworm 

growth, so that the cost of urmecessary applications is greater in Boone. Indeed, com 

rootworm do so poorly in Brookings that the expected cost of missed opportunities for 

control are low and only begin to rise for late planted com. On the other hand, in Boone, the 

cost of missed opportunities to control com rootworm is very high, particularly for late 

planted com. Lastly, the data in Table 5.9 indicate that the costs of an EIL that is too low are 

spread fairly evenly among plant days, whereas the costs of an EIL that is too high are 

primarily concentrated among the late plant days, particularly in Boone. 
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Table 5.10 reports the cost to a highly risk averse producer (as defined in Table 5.3) 

associated with using the indicated EILs. The general trend is for the cost to increase for 

EILs that are too low and to decrease for late plant days and EILs that are too high. For 

Brookings, the changes are only a few cents and the decrease for late plant days and high 

EILs only happens for a few cases. However in Boone, the cost to a risk averse producer 

increases over thirty cents on average for an EIL that is too low, and for EILs that are too 

high, the cost decreases substantially for producers who regularly plant com late. These 

trends in the data in Table 5.10 imply that risk averse producers find unnecessary insecticide 

applications (type II errors) more costly than risk neutral producers, and find missed 

opportunities to control com rootworm (type I errors) less costly than risk neutral producers. 

This generalization was noted previously in section 5.4.2.3 in the discussion concerning the 

effect of risk aversion on the optimal EIL. 

Considering all the data in Table 5.9, an EIL of 21 minimizes the cost of a uniform 

EIL. However, minimizing the cost does not imply that expected profit or certainty 

equivalent retums are maximized. The data are not reported here, however on average across 

all plant days and locations, a uniform EIL of 21 also maximizes the willingness to pay for 

IPM relative to always applying insecticide for both risk neutral and risk averse producers. 

The cost of using this uniform EIL is slight, except for late plant dates in Boone, where it 

ranges around 50 to 25 cents per acre. Allowing a lower EIL of 14 for this situation would 

greatly reduce this cost. 

When the cost of hiring a crop consultant is included along with the cost of using a 

uniform EIL of 21, the primary result from section 5.4.1.4 still holds. Using a cost of $5 per 

acre, the wdllingness to pay for IPM relative to always applying insecticide still exceeds this 
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cost, except for late planted com in Boone. A lower uniform EIL of 14 only reduces the loss 

associated with IPM adoption, and is not sufficient to provide a positive adoption incentive. 

Producers who regularly plant late com will not find it optimal to hire a crop consultant to 

obtain to reduce com rootworm management costs via IPM, unless the value of the service in 

other areas of crop production is sufficient. 

Besides affecting producer welfare, a uniform EIL affects the application rate of soil 

insecticides. Tables 5.11 and 5.12 report the application rates associated with different 

uniform EILs, as well as the optimal rates for risk neutral and risk averse producers for 

comparison. As expected, as the EIL decreases the rate increases. Also, as the plant day 

increases, the rate increases because the com rootworm population does better with late 

planted com. and the rate is higher in Boone than in Brookings because the climate in Boone 

is more conducive to com rootworm than in Brookings. Using the optimal EIL of 21 in 

Brookings results in an increase in the application rate over the optimal rate in all cases, but 

the highest rate is still less than 16% of the status quo rate. However, with an EIL of 21 in 

Boone, the application rate is greater than the optimal rate for early plant dates and less for 

late plant dates. The average rate across all plant dates in Boone with the uniform EIL of 21 

is slightly less except for highly risk averse producers. 

In summary, the welfare costs associated with using a uniform EIL can potentially be 

substantial for early or late planted com and relatively low or high EILs. However, the 

optimal uniform EIL of 21 results in welfare costs that on average are less than 20 cents per 

acre; only late planted com in Boone exceeds this average. This small effect does not change 

the qualitative results presented in previous sections—IPM still has substantial value to 

producers over the status quo practice, except for producers who regularly plant late com. In 
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addition, the optimal uniform EIL of 21 results in only a slight increase of the application 

rate over the optimal rate on Brookings, but on average a slight decrease of the average 

application rate in Boone. Thus the simplicity and resulting ease in implementation and 

education created by a uniform EIL do not incur substantial welfare or environmental costs. 

Table 5.11. Optimal application rates and application rates for uniform EIL for Brookings 
expressed as percentage of the status quo rate 

Plant Day 
Risk 

Neutral 
Risk 

Averse" 
Risk 

Averse*" 
Uniform Economic Injury Level 

7 14 21 28 35 
April 23 (113) 0.0 0.0 0.0 3.2 0.6 0.2 0.1 0.0 
April 30 (120) 0.0 0.0 0.0 8.3 3.0 1.5 0.8 0.5 
May 7(127) 1.6 1.4 1.1 13.0 6.7 4.4 3.0 2.2 
May 14(134) 7.7 7.1 6.8 18.9 12.2 9.2 7.1 5.9 
May 21 (141) 15.8 15.1 14.3 26.9 19.6 15.8 13.8 11.8 

Average 5.0 4.7 4.4 14.1 8.4 6.2 5.0 4.1 
With a 20% risk premium and all variables stochastic. See Table 5.3. 

'' With a 40% risk premium and all variables stochastic. See Table 5.3. 

Table 5.12. Optimal application rates and application rates for uniform EIL for Boone 
expressed as percentage of the status quo rate 

Risk Risk Risk Uniform Economic Injury Level 
Plant Day Neutral Averse® Averse*" 7 14 21 28 35 
April 15 (105) 2.0 1.7 1.6 22.8 8.7 4.3 24 1.6 
April 22(112) 10.2 9.7 9.2 37.0 18.2 11.5 8.3 6.9 
April 29(119) 21.7 20.3 18.9 47.8 27.6 20.3 17.0 15.3 
May 6 (126) 34.4 32.9 31.3 56.2 37.8 30.7 27.8 26.6 
May 13(133) 50.3 49.5 47.7 64.3 49.0 42.7 40.6 40.1 

Average 23.7 22.8 21.7 45.6 28.3 21.9 19.2 18.1 
With a 20% risk premium and all variables stochastic. See Table 5.3. 

'' With a 40% risk premium and all variables stochastic. See Table 5.3. 
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5.5 Analysis of IPM Insurance 

5.5.i Willingness to Pay for IPM Insurance 

5.5.1.1 Choice of Insurance Signal 

The model of com rootwomi IPM insurance developed here has two stochastic 

variables available for use as insurance signals for paying indemnities—the observed root 

rating and the percent of the stand lodged. The three insurance schedules reported in 

equations (5.7a-c) were developed to determine how root rating alone, lodging alone, and 

root rating and lodging together perform as insurance signals. All three schedules pay 

producers an indemnity that equals the expected loss associated with the observed signal, but 

only when the signal is above the threshold. Producers receive this coverage at an actuarially 

fair premium and the willingness to pay for IPM with this insurance coverage serves as the 

criterion to determine which signal performed best from the producer's perspective. 

As previously noted, producers pay no deductible, which biases the analysis in favor 

of IPM insurance. For the results reported here, the root rating threshold for indemnities is 

5.0 and the lodging threshold is 5%. Using the coefficients reported in Table 4.7, for the 

indemnity based only on the root rating the threshold value of 5.0 implies an average yield 

loss of 5.34% before an indemnity is received. For the indemnity based only on lodging the 

threshold value of 5% implies an average yield loss of 0.69% before an indemnity is 

received. For the indemnity schedule using both signals, the expected yield loss before an 

indemnity is received ranges between 0.50% and 2.24%, depending on the exact combination 

of root rating and lodging that occurs when either threshold is met. These losses at the 

threshold could be subtracted from the indemnity as deductibles, however, in the results 

reported here, this is not the case, which biases the analysis in favor of IPM insurance. 
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These thresholds imply a wide range of expected losses before IPM insurance 

coverage begins. The threshold root rating of 5.0 was chosen because it roughly corresponds 

to the threshold used by the com rootworm IPM insurance developed by IGF Insurance 

(Griffin 1999). The IGF insurance product uses a root rating threshold of 3.5 on the 1-6 

scale, which corresponds to approximately a 6.0 on the 1-9 scale (Oleson 1998). The other 

two schedules include a high level of coverage and a moderate to high level as alternatives. 

Risk neutral producers who maximize expected profit have no incentive to purchase 

actuarially fair insurance that uses a linear indemnity schedule as the insurance here does. 

Certainty equivalent returns for a risk averse producer, who purchases IPM insurance 

whenever IPM recommends that no insecticide be applied, are used to measure producer 

welfare under 1PM insurance coverage. Figure 5.6 illustrates graphically how certainty 

equivalent returns for a moderately risk averse producer (as defined in Table 5.3) with IPM 

insurance coverage based on both the root rating and lodging change as the EIL increases 

from 0 to 100. As for previous plots, the plot for Brookings is for com planted on May 14 

(Julian day 134) and the plot for Boone is for com planted on April 29 (Julian day 119). In 

general, no difference between these plots and those in Figure 5.4 is readily noticeable except 

for a slight vertical shift upward. 

To visually compare the three insurance programs, the difference between certainty 

equivalent returns using IPM with and without each type of insurance are used. This is 

simply the willingness to pay to switch from using IPM without IPM insurance to using IPM 

with actuarially fair insurance based on one of the three different signals. Figure 5.7 

illustrates how this willingness to pay changes as the EIL increases from 0 to 100. 
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Figure 5.6. Moderately risk averse producer's certainty equivalent returns with IPM 
insurance paying indemnities based on both the root rating and lodging ($/ac) versus 
economic injury level (adults/m") for Brookings (top) and Boone (bottom) 

Clearly as an insurance signal, at the thresholds used, lodging alone outperforms the 

root rating alone and using both root rating and lodging. This is partly due to the lower 

indemnity implied by the 5% lodging threshold. However, the low willingness to pay for the 

root rating threshold was surprising, given that it is similar to that used for the IGF insurance 

product. To make the IPM insurance as attractive as possible, all analyses of IPM insurance 

in subsequent sections use only insurance that pays indemnities based on the observed 

lodging. Lastly, note that the increase of the willingness to pay for IPM insxxrjuice as the EIL 

increases is to be expected, since a higher EIL implies a greater probability of com rootworm 

damage. 
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Figure 5.7. Moderately risk averse producer's willingness to pay ($/ac) for IPM insurance 
versus the economic injury level (adults/m~) for Brookings (top) and Boone (bottom) 

The choice of lodging as an insurance signal has empirical support in the literature. 

Lodging is an important determinate of yield loss associated with com root worm 

damage—observed root ratings can be the same for lodged and unlodged com, but if plants 

lodge as a result of com rootworm feeding, yield losses can be substantial. Spike and 

Tollefson (1991) used artificial com rootworm infestations and artificial lodging to 

experimentally demonstrate that artificially induced lodging caused on average an additional 

12% yield loss in artificially infested com in a wet year. In a dry year, they found no yield 

difference between com artificially infested and uninfested, but artificially lodged com 

exhibited a 34% yield loss even when no com rootworm were present. Their results are 
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consistent with the finding here that producers have the greatest willingness to pay for 

insurance paying indemnities based on lodging. 

The low willingness to pay for insurance based on the root rating seems surprising, 

given the focus in the literature on the root rating as a measure of the effectiveness of control 

practices at reducing com rootworm population pressure. However, com rootworm 

population pressure, which the root rating measures, and yield loss are two separate, but 

related variables. Gray and Steffey (1998) conducted an extensive evaluation of root ratings 

based on a four-year field study in two locations Illinois with twelve different com varieties. 

They find that root ratings well below typical thresholds can be associated with economic 

yield losses. As a result, insecticide applications are profitable even when untreated plots 

exhibit root ratings that are typically considered indicative of sub-economic damage. This 

result is consistent with the results of Spike and Tollefson (1991) and the finding here that 

insurance paying indemnities based on root ratings has low value to producers. 

5.5.1.2 Willingness to Pay for IPM Insurance Based on Optimal EIL versus Uniform EIL 

In this brief sub-section, the willingness to pay for IPM with insurance coverage 

when IPM uses the EIL optimal for the specific plant day and location is compared to the 

willingness to pay for IPM with insurance coverage when IPM uses a unifomi EIL for all 

plant days and locations. Data used to generate figures such as Figure 5.6 were used to 

determine the certainty equivalent returns associated with the optimal EIL and several other 

EILs. for each plant day and location, and both levels of risk aversion. Using these certainty 

equivalent rettiras data, the willingness to pay for IPM with insurance coverage based on 

lodging using each EIL, relative to always applying insecticide can be determined. Table 
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5.13 reports the results for a moderately risk averse producer, while Table 5.14 reports the 

same results for a highly risk averse producer. 

The cost of using each EIL is simply the difference between the willingness to pay for 

IPM insurance witli the optimal EIL (EIL*) and the uniform EIL. Again an EIL of 21 

maximizes the average willingness to pay over all plant dates for both regions and as before, 

the cost associated with this EIL is generally only a few cents. Thus insurance does not 

change the qualitative result obtained in section 5.4.3—the simplicity and ease of 

implementation created by a uniform has few associated welfare costs. 

5.5.1.3 Evaluation of Corn Rootworm IPM Insurance 

Proposition 2 in chapter 2 demonstrated that if the marginal utility of profit and the 

marginal indemnity for an increase of coverage are positively correlated, then actuarially fair 

green insurance increases producer incentives for BMP adoption. This proposition follows 

Table 5.13. Moderately risk averse^ producer's willingness to pay ($/ac) for IPM with 
insurance with different EILs in Brookings and Boone over a range of plant days 

Willingness to Pay 
Location Plant Day EIL* EIL=7 EIL=14 EIL=21 EIL=28 EIL=35 

Brookings April 23 (113) 12.09 11.72 12.02 12.07 12.09 12.09 
Brookings April 30(120) 11.86 11.01 11.60 11.75 11.81 11.84 
Brookings May 7(127) 11.36 10.35 11.00 11.20 11.28 11.32 
Brookings May 14(134) 10.44 9.54 10.17 10.36 10.41 10.40 
Brookings May 21 (141) 9.22 8.48 9.06 9.20 9.14 9.11 

Average 10.99 10.22 10.77 10.92 10.95 10.95 

Boone April 15 (105) 10.69 8.75 10.19 10.53 10.64 10.68 
Boone April 22(112) 9.37 7.07 8.88 9.31 9.37 9.25 

Boone April 29(119) 7.91 5.77 7.58 7.88 7.70 7.35 
Boone May 6(126) 6.21 4.68 6.07 6.10 5.60 4.88 
Boone May 13 (133) 4.28 3.48 4.27 3.95 3.04 1.95 

Average 7.69 5.95 7.40 7.55 7.27 6.82 

With a 20% risk premium and all variables stochastic. See Table 5.3. 
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Table 5.14. Highly risk averse® producer's willingness to pay ($/ac) for IPM with insurance 
with different EILs in Brookings and Boone over a range of plant days 

Willingness to Pay 
Location Plant Day EIL* EIL=7 EIL=14 EIL=21 EIL=28 EIL=35 

Brookings April 23 (113) 12.35 11.97 12.27 12.33 12.35 12.35 
Brookings April 30 (120) 12.17 11.24 11.87 12.03 12.11 12.14 
Brookings May 7 (127) 11.73 10.57 11.27 11.51 11.62 11.66 
Brookings May 14(134) 10.85 9.73 10.44 10.69 10.76 10.83 

Brookings May 21 (141) 9.61 8.66 9.32 9.52 9.54 9.60 
Average 11.34 10.43 11.03 11.22 11.28 11.32 

Boone April 15 (105) 11.24 9.04 10.61 11.00 11.16 11.23 
Boone April 22(112) 9.99 7.27 9.26 9.82 9.94 9.91 

Boone April 29(119) 8.45 5.90 7.95 8.40 8.32 8.10 
Boone May 6 (126) 6.63 4.81 6.41 6.62 6.28 5.69 
Boone May 13(133) 4.70 3.66 4.63 4.58 3.82 2.92 

Average 8.20 6.14 7.77 8.08 7.90 7.57 

With a 40% risk premium and all variables stochastic. See Table 5.3. 

from the fact that the partial derivative of the optimal expected utility with respect to yS, the 

level of insurance coverage, is the covariance of the marginal utility and the marginal 

indemnity. In the empirical model as specified here, the lodging threshold LTH is analogous 

to the level of coverage. A threshold of 100% implies that no insurance indemnities are ever 

paid—0% coverage, which is the case for producers using IPM without insurance. A lodging 

threshold less than 100%, such as 5% as used for the simulations here, implies some level of 

coverage between 0% and 100%, probably nearly 100%. The marginal utility function for 

CARA utility is simple to obtain. However, the indemnity schedule (5.7b) is not 

differentiable with respect to LTH- A.s a result, the covariance of marginal utility and the 

marginal indemnity, or equivalently the derivative of optimal expected utility with respect to 

insurance coverage, cannot be calculated analytically from the simulation data. Rather it 
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must be numerically approximated with differences by changing the level of coverage and 

noting the changes in the optimal expected utility. 

Certainty equivalent returns are a monetary measure of expected utility, so that an 

increase in expected utility is accompanied by an increase in certainty equivalent returns. 

Table 5.15 reports the willingness to pay for IPM with and without insurance relative to 

always applying insecticide, when IPM uses the optimal EIL for each location and plant day. 

and the net change that IPM insurance generates. Table 5.16 does the same, but for IPM that 

uses a uniform EIL of 21. The reported changes are a monetarization of the changes in 

expected utility generated by IPM insurance when coverage is changed from no coverage 

= 0) to something greater than zero. The positive changes reported in Table 5.15 indicate 

that expected utility increases with insurance coverage, implying that the marginal utility and 

Table 5.15. Willingness to pay (WTP) for IPM with and without actuarially fair insurance 
relative to always applying insecticide, when IPM uses the optimal EIL 

Moderately Risk Averse" Highly Risk Averse" 
WTP for WTP for 

WTP 1PM with WTP 1PM with 
Location Plant Day for IPM Insurance Change for IPM Insurance Change 

Brookings April 23 (113) 11.80 12.09 0.29 11.83 12.35 0.52 
Brookings April 30 (120) 11.55 11.86 0.31 11.61 12.17 0.56 
Brookings May 7(127) 11.02 11.36 0.34 11.13 11.73 0.60 
Brookings May 14(134) 10.12 10.44 0.32 10.27 10.85 0.58 

Brookings May 21 (141) 8.93 9.22 0.29 9.07 9.61 0.54 

Average 10.68 10.99 0.31 10.78 11.34 0.56 

Boone April 15 (105) 10.28 10.69 0.41 10.49 11.24 0.75 
Boone April 22(112) 9.00 9.37 0.37 9.21 9.99 0.78 
Boone April 29 (119) 7.52 7.91 0.39 7.81 8.45 0.64 
Boone May 6 (126) 5.91 6.21 0.30 6.13 6.63 0.50 
Boone May 13 (133) 4.06 4.28 0.22 4.24 4.70 0.46 

Average 7.35 7.69 0.34 7.58 8.20 0.62 

With a 20% risk premium and all variables stochastic. See Table 5.3. 
'' With a 40% risk premiimi and all variables stochastic. See Table 5.3. 
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Table 5.16. Willingness to pay (WTP) for 1PM with and without actuarially fair insurance 
relative to always applying insecticide, when IPM uses a uniform EIL of 21 

Moderately Risk Averse" Highly Risk Averse" 
WTP for WTP for 

WTP IPM with WTP IPM with 
Location Plant Day for IPM Insurance Change for IPM Insurance Change 

Brookings April 23 (113) 11.78 12.07 0.29 11.81 12.33 0.52 
Brookings April 30 (120) 11.45 11.75 0.30 11.49 12.03 0.54 

Brookings May 7 (127) 10.90 11.20 0.30 10.97 11.51 0.54 
Brookings May 14(134) 10.06 10.36 0.30 10.15 10.69 0.54 
Brookings May21 (141) 8.92 9.20 0.28 9.02 9.52 0.50 

Average 10.62 10.92 0.30 10.69 11.22 0.53 

Boone April 15 (105) 10.15 10.53 0.38 10.31 11.00 0.69 

Boone April 22(112) 8.94 9.31 0.37 9.14 9.82 0.68 
Boone April 29(119) 7.52 7.88 0.36 7.73 8.40 0.67 
Boone May 6 (126) 5.76 6.10 0.34 6.01 6.62 0.61 
Boone May 13(133) 3.63 3.95 0.32 4.00 4.58 0.58 

Average 7.20 7.55 0.35 7.44 8.08 0.64 

^ With a 20% risk premium and all variables stochastic. See Table 5.3. 
'' With a 40% risk premium and all variables stochastic. See Table 5.3. 

the marginal indemnity are positively correlated, thus satisfying the sufficient condition in 

Proposition 2 for actuarially fair insurance to increase producer incentives to adopt IPM. The 

results in Table 5.16 indicate that switching to IPM that uses a uniform EIL of 21 leaves the 

sign of the changes the same and the magnitudes change little. Despite this generally 

positive result for actuarially fair insurance, the pertinent question to address concems 

actuarially feasible insurance—insurance that includes a premium load, which is addressed 

by Proposition 3. 

The changes reported in Tables 5.15 and 5.16 are the willingness to pay for 

actuarially fair IPM insurance for IPM that uses either the optimal EIL or a uniform EIL. 

This willingness to pay is not substantial—ranging from $0.22 to $0.75 for IPM using an 
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optimal EIL and $0.28 to $0.69 for IPM using a uniform EIL. These increases in the 

willingness to pay are for insurance that charges actuarially fair premiums that vary with the 

plant date. Table 5.17 reports these actuarially fair premiums. The premiums are higher in 

Boone than in Brookings and increase as the plant date increases because both these changes 

imply an increase in the com rootworm population and an associated increase in com 

rootworm damage and thus indemnities received. 

A more realistic assumption is that insurance providers will charge a single premium 

that varies by location, but is uniform across plant date. Using the average premium across 

plant dates at both locations for this uniform premium. Table 5.18 reports the willingness to 

pay for IPM with insurance coverage and the associated increase in the willingness to pay 

due to insurance coverage. The average willingness to pay and the average increase remain 

essentially unchanged, but the distribution of each across plant days changes noticeably. 

Using a uniform average premium increases the premiums for producers who plant 

early and decreases them for those who plant late. This reduces the willingness to pay for 

early planting producers and increases it for late planting producers, so that the overall spread 

Table 5.17. Actuarially fair prem^iums by plant day for IPM insurance based on lodging, 
for IPM using a uniform EIL of 21 adults per square meter 

Brookings — 
Plant Day Premium 

Boone — 
Plant Day Premium 

April 23 (113) 2.15 April 15 (105) 2.87 
April 30(120) 2.23 April 22(112) 3.11 
May 7(127) 2.33 April 29 (119) 3.38 
May 14 (134) 2.47 May 6 (126) 3.82 
May 21 (141) 2.63 May 13 (133) 4.52 

Average 2.36 Average 3.54 
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Table 5.18. Willingness to pay (WTP) for IPM with insurance with a uniform premium equal 
to the average actuarially fair premium, when IPM uses a uniform EIL of 21 

Moderately Risk Averse'' Highly Risk Averse" 
Location Plant Date WTP Change WTP Change 

Brookings April 23 (113) 12.07 0.08 12.33 0.31 
Brookings April 30(120) 11.75 0.17 12.03 0.41 
Brookings May 7(127) 11.20 0.27 11.51 0.51 
Brookings May 14(134) 10.36 0.41 10.69 0.65 
Brookings May 21 (141) 9.20 0.55 9.52 0.77 

Average 10.92 0.30 11.22 0.53 

Boone April 15(105) 10.53 -0.29 11.00 0.02 
Boone April 22(112) 9.31 -0.06 9.82 0.25 
Boone April 29(119) 7.88 0.20 8.40 0.51 
Boone May 6 (126) 6.10 0.62 6.62 0.89 
Boone May 13 (133) 3.95 1.30 4.58 1.56 

Average 7.55 0.35 8.08 0.65 

" With a 20% risk premium and all variables stochastic. See Table 5.3. 
'' With a 40% risk premium and all variables stochastic. See Table 5.3. 

in the willingness to pay across plant days is reduced relative to insurance with the variable 

premium. On the other hand, the increase in the willingness to pay due to insurance coverage 

was evenly distributed across plant days with the variable premium. However, with the 

uniform premium, the distribution of this increase becomes skewed to favor producers who 

regularly plant com late. This skew is so severe that moderately risk averse producers in 

Boone have a disincentive to purchase 1PM insurance charging a uniform average premium. 

On the other hand, the skew also increases the value of IPM for producers who plant late in 

Boone so that it the willingness to pay is sufficient to cover the cost of hiring a crop 

consultant for highly risk averse producers, and nearly so for moderately risk averse 

producers. Without this skew, these producers do not obtain sufficient benefits to justify 

adopting IPM when the costs of hiring a crop consultant are included. 
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However, this analysis ignores the adverse selection problem created by using this 

uniform average premium. Producers who regularly plant com early will not purchase this 

insurance, because it does not generate sufficient risk sharing benefits for them. If they are 

not included in the pool of producers purchasing IPM insurance, the average premium 

charged to all producers is too small. However, if the average uniform premium is increased, 

even fewer producers will purchase IPM insurance, further exacerbating the adverse selection 

problem. One possible solution that is easy to implement is to require producers to purchase 

IPM insurance before planting has begun. 

In terms of Proposition 3 and Corollary 3 from chapter 2, the changes in the 

willingness to pay reported in Tables 5.15, 5.16, and 5.18 are the maximum load that 

insurance providers can add to the respective premiums charged and still leave producers 

some incentive to purchase the instjrance. The size of this load determines whether green 

insurance is actuarially feasible and thus superior to green payments at providing adoption 

incentives. Insurance providers use the load to cover administrative and insurance 

adjustment costs, as well as recover development costs and earn a normal rate of return. In 

general, the increases reported in these tables do not seem sufficient to pay a load on the 

premium and still leave producers any incentive to purchase the IPM insurance. 

Consider the insurance purchase problem from the producer's perspective. The 

premium is essentially an investment and the increases in the willingness to pay reported in 

Table 5.15, 5.16, and 5.18 are the average returns to this investment. For simplicity, restrict 

the analysis to IPM using a uniform EIL of 21 and convert these returns to percentages of the 

premium charged to determine the percent return on the initial investment. Table 5.19 

reports these percents for a variable premium changing with the plant day and location and a 
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Table 5.19. Increase in willingness to pay for IPM due to insurance coverage when IPM uses 
a uniform EIL of 21, expressed as a percent of the premium 

Moderately Risk Averse Highly Risk Averse 
Variable Uniform Variable Uniform 

Location Plant Date Premium Premium Premium Premium 

Brookings April 23 (113) 11.9 10.9 19.5 18.1 
Brookings April 30 (120) 11.9 11.3 19.5 18.6 
Brookings May 7 (127) 11.4 11.3 18.8 18.6 

Brookings May 14(134) 10.8 11.3 17.9 18.6 
Brookings May 21 (141) 9.6 10.6 16.0 17.5 

Average 11.1 11.1 18.3 18.3 

Boone April 15(105) 11.7 9.7 19.4 16.3 
Boone April 22(112) 10.6 9.5 17.9 16.1 
Boone April 29(119) 9.6 9.2 16.5 15.9 
Boone May 6 (126) 8.2 8.8 13.8 14.7 
Boone May 13 (133) 6.6 8.3 11.4 14.1 

Average 9.1 9.1 15.4 15.4 

" With a 20% risk premium and all variables stochastic. See Table 5.3. 
'' With a 40% risk premium and all variables stochastic. See Table 5.3. 

uniform premium that is the average across all plant days, but varies by location, as reported 

in Table 5.17. In general these returns seem too low to encourage producers to purchase IPM 

insurance, particularly once the load is added to the premium. Even if the load is sufficiently 

small to provide on average some incentive for producers to purchase the insurance, the 

added adoption incentive will not be that large, only a few cents, except maybe for highly 

risk averse producers. In terms of Proposition 3 and Corollary 3 in chapter 2, this implies 

that green insurance provides little if any additional incentive to adopt com rootworm IPM, 

and thus green payments are probably a better policy instrument to encourage IPM adoption. 

The low value of IPM insurance to producers seems surprising given the substantial 

willingness to pay for IPM. However, most of the value of IPM is due to the curvature of 

profit in com rootworm uncertainty, not due to the curvature of utility in profit uncertainty 
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caused by com rootwomi uncertainty. The data in Table 5.6 indicate that generally more 

than 95% of the value of IPM is accounted for by the production premium, which is due to 

the curvature of the profit function in com rootworm uncertainty. Utility is fairly linear in 

the profit uncertainty generated by com rootworm risk because the losses occurring when 

IPM fails are not substantial. The potential for leirger losses is needed before the curvature in 

utility is sufficient to generate a significant need for risk sharing. As a result, IPM provides 

little additional value to risk averse producers that it does not already provide to risk neutral 

producers. Thus, though the value of the information provided by IPM is substantial, the 

need for risk sharing is small for producers facing stochastic com rootworm damage under 

IPM. As a result, there is a substantial willingness to pay for IPM, but a relatively small 

willingness to pay for IPM insurance. 

This can be shown empirically with this model. Providing producers with 100% 

insurance coverage and charging an actuarially fair premium stabilizes com rootworm losses 

at their mean and completely removes uncertainty due to com rootworm. In the model here, 

this can be accomplished by setting the root rating threshold at 1 and the lodging threshold at 

0%. Simulations of this sort were used to determine the willingness to pay to fix com 

rootworm losses at their mean and indicate the need for risk sharing. Table 5.20 reports the 

resulting willingness to pay relative to the status quo practice of always applying insecticide 

and the increase this represents over IPM using a uniform EIL of 21. 

The total willingness to pay is relatively large, but the increase in willingness to pay 

generated by fixing com rootworm losses at their mean is small. As a result, even if a perfect 

insurance signal were available so that all com rootworm risk when using IPM could be 
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Table 5.20. Highly risk averse® producer's willingness to pay (WTP) to stabilize com 
rootworm losses at their mean and the resulting increase relative to the willingness to pay 
for IPM without insurance using a uniform EIL of 21 

Plant Day 
Brookings 

WTP Increase Plant Day 
• Boone 

WTP Increase 

April 23 (113) 12.28 0.46 April 15 (105) 10.92 0.61 
April 30 (120) 11.97 0.47 April 22(112) 9.74 0.60 
May 7 (127) 11.45 0.48 April 29(119) 8.33 0.60 
May 14(134) 10.63 0.47 May 6 (126) 6.56 0.55 
May 21 (141) 9.46 0.44 May 13 (133) 4.52 0.52 

Average 
TTTTTrC TSST—r 

11.16 0.47 Average 8.01 0.58 

" With a 40% risk premium and all variables stochastic. See Table 5.3. 

eliminated with complete insurance, this insurance would not have great value to producers 

relative to IPM alone. 

This result still does not resolve the paradox of com rootworm 1PM—^why do few 

producers adopt 1PM when it seems to have obvious value? Originally it was hoped that the 

analysis here would find that 1PM was still "risky," thus explaining the paradox, and that 

IPM insurance could play a role as a possible remedy. However, the results indicate that 

IPM is not risky and that it removes most of the uncertainty in profit due to com rootworm 

losses, which only confirms the original paradox. Despite its complexity, this model is still 

highly stylized and does not capture many important factors in the adoption decision. Nowak 

(1992) reviews several that may be relevant to com rootworm IPM, including lacking or 

conflicting information, lack of locally available supporting resource (such as a reputable 

crop consultant), and the belief in traditional practices that many producers hold. In addition, 

agricultural chemical companies have large advertising budgets to encourage the regular use 

of pesticides, including soil insecticides. Because the value of IPM to producers is relatively 

large, there is potential for those "selling" IPM, including insurance companies, to extract 
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part of this rent. As a result, IPM insurance may have a role in encouraging producers to 

adopt com rootworm IPM. In the final analysis, stylized economic models will have to be 

put aside and the IPM insurance concept will have to be tested in the field—^will real farmers 

buy real IPM insurance at the offered price? 

5.5.2 Impact of IPM Insurance on Optimal Insecticide Use 

Chapter 2 presented three propositions concerning the impact of green payments and 

green insurance on optimal input use. In Proposition 4, decreasing absolute risk aversion is 

among the conditions for the wealth effect caused by green payments to affect optimal input 

use. However, constant absolute risk aversion is assumed in the model used here, so that the 

wealth effect must be zero. Similarly, the moral hazard effect developed in Proposition 6 

cannot occur in the model used here. By assumption, producers cannot affect the distribution 

function of the insurance signal—lodging—if they do not apply insecticide, and producers 

can only purchase IPM insurance when they do not apply insecticide. Lastly, Proposition 5 

concerned the risk effect, the impact of green insurance coverage on optimal input use. If 

producers use the same uniform EIL with and without IPM insurance, actual use of 

insecticide will not change as a result of insurance coverage. Optimal insecticide use only 

decreases as a result of the adoption effect, for which it was not possible to derive a 

proposition. However, Proposition 5 applies to optimal insecticide use, not actual insecticide 

use. As a result, the sign and magnitude of the risk effect can be determined empirically and 

compared to results obtained by other researchers for insecticide. 

Table 5.21 reports the optimal EIL and associated insecticide application rate with 

and without IPM insurance for a moderately risk averse producer, while Table 5.22 does the 

same for a highly risk averse producer. For both locations and for all plant dates the optimal 
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Table 5.21. Effect of IPM insurance on the optimal EIL and the insecticide application rate 
(expressed as a percent of the status quo rate) for a moderately risk averse^ producer 

No Insurance With Insurance 
Location Plant Day EIL Rate EIL Rate 

Brookings April 23 (113) 100.0 0.0 lOO.O 0.0 
Brookings April 30 (120) 100.0 0.0 100.0 0.0 
Brookings May 7(127) 45.5 1.4 50.5 1.1 
Brookings May 14(134) 28.0 7.1 28.0 6.9 
Brookings May 21 (141) 23.0 15.1 25.0 14.5 

Average 59.3 4.7 60.7 4.5 

Boone April 15(105) 34.0 1.7 34.5 1.6 
Boone April 22(112) 24.5 9.7 25.0 9.4 
Boone April 29(119) 21.0 20.3 22.5 19.3 
Boone May 6 (126) 18.0 32.9 19.0 32.1 
Boone May 13(133) 13.5 49.5 14.0 49.0 

Average 22.2 22.8 23.0 22.3 

With a 20% risk premium and all variables stochastic. See Table 5.3. 

Table 5.22. Effect of 1PM insurance on the optimal EIL and the insecticide application rate 
(expressed as a percent of the status quo rate) for a highly risk averse" producer 

No Insurance With Insurance 
Location Plant Day EIL Rate EIL Rate 

Brookings April 23 (113) 100.0 0.0 100.0 0.0 
Brookings April 30(120) 100.0 0.0 100.0 0.0 
Brookings May 7(127) 51.0 1.1 68.5 0.5 
Brookings May 14(134) 29.5 6.8 41.5 5.0 

Brookings May 21 (141) 25.5 14.3 30.5 12.7 
Average 35.3 7.4 46.8 6.1 

Boone April 15 (105) 34.5 1.6 35.5 1.5 
Boone April 22(112) 25.5 9.2 31.5 7.5 
Boone April 29(119) 23.0 18.9 23.5 18.8 
Boone May 6 (126) 19.5 31.3 20.0 31.7 

Boone May 13 (133) 15.0 47.7 16.5 46.2 
Average 61.2 4.4 68.1 3.6 

" With a 40% risk premium and all variables stochastic. See Table 5.3. 
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EIL increases, and thus the optimal application rate decreases. This indicates that soil 

insecticides for com rootworm control are a risk reducing input for com producers in these 

areas. This result agrees with the conventional finding that total expenditures on chemical 

inputs (fertilizer and pesticides) decrease when producers purchase crop insurance (Smith 

and Goodwin 1996, Babcock and Hennessy 1996, Quiggin et al. 1993). 

5.6 Summary of Empirical Findings 

This long chapter presented several empirical findings derived from the Monte Carlo 

simulations, some of which are related to the theoretical results presented in chapter 2. These 

findings are summarized here: 

1) Com rootworm IPM has value to producers who armually apply soil insecticides, on 

average around $ 10 per acre in Brookings and a little less than $7.50 per acre in Boone. 

This value is sufficient to cover the cost of hiring a crop consultant to provide com 

rootworm IPM recommendations along with other services. 

2) Adoption of IPM reduces the frequency of insecticide applications substantially. On 

average producers using IPM in Brookings optimally apply insecticide only about 5% of 

the time, while in Boone the frequency is 20''/o-25%. 

3) Relative to using an EIL that varies optimally with the plant day and location, a uniform 

EIL of 21 adults per square meter (about 3 adults per plant) captures most of the value of 

IPM with little change in the frequency of insecticide application. 

4) The optimal variable and uniform EILs derived here are higher than those typically 

recommended by entomologists. This difference may be due to several factors, including 

model error and only including one com rootworm species. However, the recommended 
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EIL may not be expected profit or utility maximizing, but rather concerned with reducing 

the probability of readily observable IPM failures to acceptable levels. 

5) Lodging is a better measure than root ratings for the yield loss occurring as a result of 

com rootworm damage. However, this does not imply that root ratings are not effective 

measures of com rootworm damage. 

6) IPM insurance, charging actuarially fair premiums that vary with plant day, has value to 

risk averse producers—on average about $0.30 to $0,65 per acre. These actuarially fair 

premiums range from $2.15 to $2.63 in Brookings and from $2.87 to $4.52 in Boone. If 

a uniform premium averaging across planting dates is used, the average value of IPM 

insurance remains about $0.30 to $0.65 per acre, but producers who regularly plant com 

early have little incentive, or have disincentives, to purchase 1PM insurance. 

7) Once a load is added to the premium to make IPM insurance actuarially feasible, the 

remaining willingness to pay probably will not be sufficient to encourage producers to 

purchase 1PM insurance. As a policy instrument to encourage IPM adoption. IPM 

insurance will only dominate a green payment subsidy if factors not modeled here are 

reduced more by actuarially feasible insurance than by the subsidy. 

8) Losses associated with IPM failure are not substantial. As a result, risk sharing needs for 

producers using IPM are not significant and thus IPM insurance has little value to 

producers. 

9) Soil insecticides for com rootworm control are risk reducing inputs, which agrees with 

the conventional finding concerning chemical inputs such as pesticides. 
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